Abstract
This paper investigates the secrecy performance of maximal ratio combining (MRC) and selection combining (SC) with imperfect channel state information (CSI) in the physical layer. In a single-input multipleoutput (SIMO) wiretap channel, a source transmits confidential messages to the destination equipped with M antennas using the MRC/SC scheme to process the received multiple signals. An eavesdropper equipped with N antennas also adopts the MRC/SC scheme to promote successful eavesdropping. We derive the exact and asymptotic closed-form expressions for the ergodic secrecy capacity (ESC) in two cases: (1) MRC with weighting errors, and (2) SC with outdated CSI. Moreover, two important indicators, namely high signal-to-noise ratio (SNR) slope and high SNR power offset, which govern ESC at the high SNR region, are derived. Finally, simulations are conducted to validate the accuracy of our proposed analytical models. Results indicate that ESC rises with the increase of the number of antennas and the received SNR at the destination, and fades with the increase of those at the eavesdropper. Another finding is that the high SNR slope is constant, while the high SNR power offset is correlated with the number of antennas at both the destination and the eavesdropper.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
Channel state information (CSI) cannot be obtained perfectly because of the complexity of electromagnetic wave spreading and transmitting delay. Thus, CSI has estimation errors at the receiver. Janarthanan and Bhaskar (2013) and Khuong and Sofotasios (2013) analyzed the capacity and bit-error-rate in single-input multiple-output (SIMO) and multi-hop cooperation systems with CSI estimation errors, respectively.
Due to the broadcast nature of wireless links, it is difficult to prevent eavesdroppers from overhearing wireless communications (Liu Y et al., 2015; 2016). Thus, security issues play an important role in wireless networks. Physical layer security has been considered widely as an effective technology to prevent information from being intercepted (Shiu et al., 2011; Yang et al., 2015). In different fading scenarios, Sun et al. (2012), Zhang et al. (2014), Pan et al. (2015; 2016), Lei et al. (2015; 2016), and Liu H et al. (2016a) studied the secrecy performance over independent/correlated Rayleigh, log-normal, Rayleigh-log-normal, generalized-K, and generalized Gamma fading channels. In addition, maximal ratio combining (MRC) was used to improve the secrecy performance in He et al. (2011), Alves et al. (2012), Yang et al. (2013a; 2013b; 2013c), Wang et al. (2014a; 2014b), and Pan et al. (2015).
As an ideal diversity for linear systems, MRC is the best among the basic linear diversity combining schemes. However, due to the fact that the diversity weighting factors are proportional to the complex conjugate of the channel fading vector in time, when the pilot frequency range and channel bandwidth are similar, it is easy to cause a Gaussian channel estimation error, resulting in nonideal MRC diversity and degraded output-combined signal-to-noise ratio (SNR) (Gans, 1971). In addition, to isolate pilot from the signal in time, the signal and pilot are transmitted alternately. When this separation time is on the order of the reciprocal of the fading rate, the weighted factor obtained from the pilot will also have a Gaussian channel estimation error (Tomiuk et al., 1999).
For the situation where the receiver and the eavesdropper show Gaussian errors at the same time, Shrestha and Kwark (2014) and Hu and Tao (2015) extended the work of Gans (1971) and Tomiuk et al. (1999), and studied the secrecy outage probability in SIMO and multiple-input multiple-output (MIMO) wiretap channels. Zhao and Pan (2016) investigated the secrecy outage performance of decode-and-forward and randomize-and-forward cooperative systems, considering the MRC scheme with weighting errors.
However, Shrestha and Kwark (2014), Hu and Tao (2015), and Zhao and Pan (2016) did not consider the ergodic secrecy capacity (ESC), which is one of the most important parameters in physical layer security (Wang et al., 2014a; 2014b). Because of the rapid increase in the demand for wireless communication services, the capacity of fading channels is increasingly becoming a main concern in the design of wireless communication systems (Khatalin and Fonseka, 2006). In a Gaussian noise environment, the capacity is constant, because the carrier-to-noise ratio is constant. In fading channels, such as Rayleigh fading channels, the SNR of receivers varies with time. This offers an explanation why the capacity of fading channels has to be calculated in an average sense (Lee, 1990; Alouini and Goldsmith, 1999; Simon and Alouini, 2005). The derivation of a closed-form expression for the capacity over fading channels is of higher computational complexity compared to that of the outage probability, especially the ESC over wiretap channels, as logarithmic functions are presented in the integral equation (Rezki et al., 2014).
Though MRC has better combining performance than selection combining (SC), SC has a lower complexity. Thus, SC is also a common combining technology in practical applications. In recent years, it has been adopted widely to improve the secrecy performance in the physical layer (Ferdinand et al., 2013; Yang et al., 2013a; 2013b; 2013c; Elkashlan et al., 2015). However, due to the transmitting delay, the CSI obtained from the pilot at the receiver may be outdated, leading to an imperfect SC and the degradation of the combined SNR.
Motivated by the above observations, we analyze the secrecy performance of a SIMO wiretap system, where a source equipped with a single antenna transmits confidential messages to the destination equipped with M (M ≥ 1) antennas using the MRC/SC scheme to process the received multiple signals. Meanwhile, an eavesdropper, which is equipped with N (N ≥ 1) antennas, adopts the MRC/SC scheme to promote successful eavesdropping. We derive the exact and asymptotic closed-form expressions for the ESC over Rayleigh fading channels under two cases: (1) MRC with weighting errors and (2) SC with outdated CSI. Further, a high SNR slope and a high SNR power offset are derived, which govern ESC in the high SNR region.
According to the numerical results in Section 5, two key insights are obtained:
-
1.
ESC rises with the increase of the number of antennas and the received SNR at the destination, and fades with the increase of those at the eavesdropper.
-
2.
High SNR slope is constant, which means that high SNR slope is independent of the number of antennas and the received SNR at the destination and the eavesdropper. In contrast, high SNR power offset is correlated with the number of antennas at the destination and the eavesdropper.
2 System model
We consider a SIMO wiretap system, in which a source (S) equipped with a single antenna encodes the confidential messages into a transmitted codeword x = [x(1), x(2),…,x(n)] using the capacity achieving codebook for the wiretap channel, which is subject to an average power constraint \({1 \over n}\sum\limits_{i = 1}^n {E\left[ {\vert x(i){\vert ^2}} \right]} \, \leq {P_{\rm{S}}}\). S transmits x to the destination (D), which is equipped with M (M ≥ 1) antennas and adopts the MRC/SC scheme to improve its received SNR; an eavesdropper (E), which is equipped with N (N ≥ 1) antennas, also adopts the MRC/SC scheme to promote successful eavesdropping. Here, perfect secrecy can be achieved by using a proper coding scheme when the received SNR of D is higher than that of E. \({h_M} = {[{h_{{{\rm{D}}_1}}},{h_{{{\rm{D}}_2}}}, \ldots ,\,{h_{{{\rm{D}}_M}}}]^T}\) and \({h_N} = {[{h_{{{\rm{E}}_1}}},{h_{{{\rm{E}}_2}}}, \ldots ,\,{h_{{{\rm{E}}_N}}}]^T}\) are the channel gain vectors of S-D and S-E links, respectively. In this study, we consider a practical passive eavesdropping scenario, which means that the CSI of the S-E link is unavailable at S; thus, S has no choice but to encode the confidential data into codewords of a constant rate (Elkashlan et al., 2015). In contrast, both D and E are aware of their individual CSI accurately in the training period. Moreover, we assume that all considered channels in this study are subject to quasi-static Rayleigh fading, where the fading coefficients are constant over one fading block but vary independently from block to block, and the fading block lengths of S-D and S-E links are equal.
2.1 Maximal ratio combining scheme
If the receivers at D and E have full CSI of their own channels, the ideal combined signals of D and E are given by
respectively, where \(h_{{{\rm{D}}_u}}^\ast \) and \(h_{{{\rm{E}}_u}}^\ast \) represent the conjugate of \({h_{{{\rm{D}}_u}}}\) and \({h_{{{\rm{E}}_v}}}\), respectively. Likewise, \({y_{{{\rm{D}}_u}}}\) and \({N_{{{\rm{D}}_u}}}\), \({y_{{{\rm{E}}_v}}}\) and \({N_{{{\rm{E}}_v}}}\) represent the received signals and the mean square noise power of the uth and vth branches, respectively.
In the practical scenario, the combiner weights \(h_{{{\rm{D}}_u}}^\ast /{N_{{{\rm{D}}_u}}}\) and \(h_{{{\rm{E}}_u}}^\ast /{N_{{{\rm{E}}_u}}}\) cannot be obtained perfectly. A complex Gaussian error will result in the weighting factors, \(\hat h_{{{\rm{D}}_u}}^\ast \) and \(\hat h_{{{\rm{E}}_v}}^\ast \), which are the estimates of \(h_{{{\rm{D}}_u}}^\ast \) and \(h_{{{\rm{E}}_v}}^\ast \) derived from the pilot signal (Gans, 1971), respectively. The channel gain with weighting errors of D is given by Hu et al. (2015) as
where ρD ∈ [0, 1] is a power coefficient defined by Eq. (58) in Gans (1971), and \({g_{{{\rm{D}}_u}}}\) is a random variable which experiences the same distribution as \({h_{{{\rm{D}}_u}}}\).
Let \({\gamma _{\rm{D}}} = \sum\limits_{u = 1}^M {(({P_{\rm{S}}}|{{\hat h}_{{{\rm{D}}_u}}}{|^2})/{N_{{{\rm{D}}_u}}})} \) and \({\gamma_{\rm{E}}}\; = \sum\limits_{v = 1}^N {(({P_{\rm{S}}}\vert {{\hat h}_{{{\rm{E}}_v}}}{\vert ^2})/{N_{{{\rm{E}}_v}}})}\) be the instantaneous SNRs at D and E, respectively. The probability density functions (PDFs) of γD and γ E are (Tomiuk et al., 1999)
respectively, where \({\bar \gamma_{\rm{D}}}\) and \({\bar \gamma_{\rm{E}}}\) are the average perantenna SNRs at D and E, respectively, Γ(·) is the Gamma function (Gradshteyn and Ryzhik, 2007), and A(·) and B(·) are
respectively, where ρE ∈ [0, 1] is the power correlation coefficient between the actual and estimated channel of S-E link..
Further, by applying the probability theory, we have
Using Eq. (3.326.2) in Gradshteyn and Ryzhik (2007), we can derive \(\sum\limits_{i = 1}^M {A(i) = 1}\). The cumulative PDFs of γD and γE can be given by (Shrestha and Kwark, 2014)
respectively, where T(·, ·) is the upper incomplete Gamma function (Gradshteyn and Ryzhik, 2007).
2.2 Selection combining scheme
In the SC scenario, before receiving confidential messages from S, D performs antenna selection using the CSI obtained from the pilot, and therefore the channel gain of the selected antenna can be written as \({h_{Ds}} = \mathop {\max }\limits_{u \in \left\{ {1,2,...,M} \right\}} \left| {{h_{Du}}} \right|\). Similarly, we have \({h_{Es}} = \mathop {\max }\limits_{v \in \left\{ {1,2,...,N} \right\}} \left| {{h_{Ev}}} \right|\).
After antenna selection, D receives the messages from S via the selected antenna. However, because of transmitting delay, the CSI of the received signal at D is normally different from the one during antenna selection. We assume that \({\tilde h_{{D_s}}}\) denotes the τd time-delayed channel coefficient version of \({h_{{D_s}}}\). The SNR at D can be written as \({\gamma _D} = \left( {{P_S}{{\left| {{{\tilde h}_{{B_s}}}} \right|}^2}} \right)/{N_0}\), where N0 denotes the AWGN’s power. Similarly, we have \({\gamma _E} = \left( {{P_S}{{\left| {{{\tilde h}_{{E_s}}}} \right|}^2}} \right)/{N_0}\), where \({\tilde h_{{E_s}}}\) denotes the τe time-delayed channel coefficient version of \({h_{{E_s}}}\).
3 Ergodic secrecy capacity of maximal ratio combining scheme
In this section, we consider that both D and E adopt MRC with weighting errors to improve their received SNR. The exact and asymptotic closed-form expressions for the ESC of MRC with weighting errors are derived.
The instantaneous secrecy capacity is given by (Shrestha and Kwark, 2014)
Thus, we can write ESC as
After some mathematical manipulation, we can obtain
which provides a general form to obtain the closed-form expression for the ESC over fading channels. In the following, the ESC analysis of SC with outdated CSI also adopts this integral equation.
Let
and
We establish Theorem 1 as follows:
Theorem 1 The closed-form expression for the ESC of MRC with weighting errors is derived as
where \({\bar C_{{\rm{D\_MRC}}}}\) and \({\bar C_{{\rm{E\_MRC}}}}\) will be derived in Eqs. (23) and (27), respectively.
Proof See Sections 3.1 and 3.2.
3.1 Derivation of \({\bar C_{{\rm{D\_MRC}}}}\)
We can rewrite \({\bar C_{{\rm{D\_MRC}}}}\) as
Substituting the PDF of γD and the cumulative density function (CDF) of γE into Eq. (15), we have Eq. (16). I1 can be rewritten as Eq. (17). Eqs. (16) and (17) are shown on the next page.
We consider the integral equation given in Appendix B in Alouini and Goldsmith (1999) as
where Γ(·, ·) is the complementary incomplete Gamma function, which is given by
where U(·, ·, ·) is the second kind of confluent hypergeometric function and 2F0(·, ¿;;·) is the hypergeometric function (Gradshteyn et al., 2007). Note that as the complementary incomplete Gamma function cannot be directly calculated in Matlab, we transform Γ(·, ·) in Eq. (18) into the form of hypergeometric function.
Using Eq. (18), we can derive Q1 as
Expanding T(·, ·) into the form of the series in Q2, we have Eq. (21), as shown on the next page.
Substituting Eqs. (20) and (21) into Eq. (17), it follows
Finally, substituting Eq. (22) into Eq. (16), we can obtain
3.2 Derivation of \({\bar C_{{\rm{E\_MRC}}}}\)
We can rewrite \({\bar C_{{\rm{E\_MRC}}}}\) as Eq. (24), as shown on the next page.
Substituting the PDF of γE into I2 and using Eq. (18), we have
Considering that the PDFs of γD and γE are similar and the equations of \({\bar C_{{\rm{D\_MRC}}}}\) and I3 have the same structure, we can rewrite I3 as
Here, it is important to note the parameters’ order in I1(·, ·, ·, ·) and I3(·, ·, ·, ·).
Substituting Eqs. (25) and (26) into Eq. (24), we can derive the closed-form expression for \({\bar C_{{\rm{E\_MRC}}}}\) as
Finally, ESC can be obtained by substituting \({\bar C_{{\rm{D\_MRC}}}}\) and \({\bar C_{{\rm{E\_MRC}}}}\) into Eq. (13).
3.3 Asymptotic ergodic secrecy capacity of maximal ratio combining
In this section, we analyze the asymptotic ESC when \({\bar \gamma_{\rm{D}}} \rightarrow \infty\), while \({\bar \gamma_{\rm{E}}}\) is finite.
Using \(\Gamma (n + 1,x)\; = \;n!\exp ( - x)\sum\limits_{r = 0}^n {{{{x^r}} \over {r!}}\;\;\;(n\; = \;0,\;1,\; \ldots \;)}\), and considering Eq. (8.352.4) in Gradshteyn and Ryzhik (2007), we can rewrite FγD(x) as
For \(\sum\limits_{i = 1}^M {A(i)\; = 1}\), FγD(x) can be rewritten as
Similarly, we can rewrite FγE(x) as
where \({\chi_{{\gamma_{\rm{E}}}}}(x)\; = \;\sum\limits_{j = 1}^N {B(j)\exp \left( { - {x \over {{{\bar \gamma}_{\rm{E}}}}}} \right)} \sum\limits_{m = 0}^{j - 1} {{{{x^m}} \over {m!\bar \gamma_{\rm{E}}^m}}}\).
As the CDF of MRC with Gaussian errors can be regarded as the weighted sum of multiple CDFs of MRC with perfect combinations (Shrestha and Kwark, 2014), to simplify the derivation of the closed form of asymptotic ESC when \({\bar \gamma_{\rm{D}}} \rightarrow \infty\), we can write the asymptotic ESC by using Eq. (22) in Wang et al. (2014a), as
Considering the closed-form expressions for I4 and I5 in Eqs. (A1)–(A4) in the Appendix, the asymptotic ESC can be analyzed. To gain more insight, we evaluate the high SNR slope and the high SNR power offset, which determine the ESC in the high SNR regime.
We rewrite the asymptotic ESC in a general form as (given by Eq. (24) in Wang et al. (2014a))
where S∞ is the high SNR slope in nat/(s·Hz) (3 dB) and Ω∞ is the high SNR power offset in 3 dB unit.
We can rewrite the high SNR slope as \({S_\infty } = \mathop {\lim }\limits_{{{\overline \gamma }_D} \to \infty } \overline C _S^\infty /\ln {\overline \gamma _D}\). Obviously, S∞ = 1. We can conclude that the number of antennas at D and E has no impact on the high SNR slope.
We can express the high SNR power offset Ω∞ as
where \(\Omega_\infty ^M = - \sum\limits_{i = 1}^M {A(i)\psi (i)}\) and \(\Omega_\infty ^N = {I_5}\). We find that the high SNR power offset is independent of \({\bar \gamma_{\rm{D}}}\). We highlight that \(\Omega_\infty ^M\) assesses the benefits of M on ESC, and \(\Omega_\infty ^N\) quantifies the loss of ESC due to eavesdropping.
4 Ergodic secrecy capacity of selection combining scheme
In this section, we investigate the ESC of SC when both D and E adopt SC with outdated CSI to improve their received SNR. The exact and asymptotic closed-form expressions for SC are derived.
4.1 Probability and cumulative density functions of selection combining with outdated imperfect channel state information
Considering Eq. (3), we have the PDF of γD using SC with outdated CSI as (given by Eq. (10) in Ferdinand et al. (2013))
Note that the correlation expression of the actual and the outdated channels gain under the SC scheme has the same form as that under the MRC scheme with weighting errors (Ferdinand et al., 2013). In addition, ρD and ρE are power coefficients defined by Eq. (58) in Gans (1971). In Eq. (34), \({f_{{\gamma_{\rm{d}}}}}( \cdot )\) is the PDF of γD in the scenario with perfect CSI, given by
where fγd,k(·) and Fγd,k(·) are the PDF and CDF of the receiving SNR at the kth antenna which experiences an exponential fading, respectively.
Using Eq. (13) in Ferdinand et al. (2013), we can derive the PDF of γD as
where \({\alpha_D} = {{{\rho_D}} \over {1 - {\rho_D}}} + {m_1} + 1\) and \({\varsigma_D} = {1 \over {1 - {\rho_D}}} - {{{\rho_D}} \over {{\alpha_D}{{(1 - {\rho_D})}^2}}}\).
The CDF of γD can be given by
Similarly, we can derive the PDF and CDF of γE as
where \({\alpha_{\rm{E}}} = {{{\rho_{\rm{E}}}} \over {1 - {\rho_{\rm{E}}}}} + {n_1} + 1\) and \({\varsigma_{\rm{E}}} = {1 \over {1 - {\rho_{\rm{E}}}}} - {{{\rho_{\rm{E}}}} \over {{\alpha_{\rm{E}}}{{(1 - {\rho_{\rm{E}}})}^2}}}\).
4.2 Ergodic secrecy capacity of selection combining
Theorem 2 The closed-form expression for the ESC of SC with outdated CSI is derived as
where \({\bar C_{{\rm{D\_SC}}}}\) and \({\bar C_{{\rm{E\_SC}}}}\) will be derived as Eqs. (44) and (48), respectively.
Proof See Sections 4.2.1 and 4.2.2.
4.2.1 Derivation of \({\bar C_{{\rm{D\_SC}}}}\)
We have \({\bar C_{\rm{D}}}{\__{{\rm{SC}}}}\) as
Substituting the PDF of γD and the CDF of γE into the above equation, we can rewrite \({\bar C_{\rm{D}}}{\__{{\rm{SC}}}}\) as Eq. (42), shown on the next page.
To simplify the analysis, we consider the following integral equation:
where a > 0.
Using the above integral equation, we can derive the closed-form expression for \({\bar C_{{\rm{D\_SC}}}}\) as
4.2.2 Derivation of \({\bar C_{{\rm{E\_SC}}}}\)
We can write \({\bar C_{{\rm{E\_SC}}}}\) as
Using the integral Eq. (43), we can derive
Considering that the PDFs of γD and γE are similar, and that the expressions of \({\bar C_{{\rm{D\_SC}}}}\) and Ξ2 have the same structure, we can rewrite Ξ2 as
The closed-form expression for \({\bar C_{{\rm{E\_SC}}}}\) is derived as
Finally, ESC can be obtained by substituting \({\bar C_{{\rm{E\_SC}}}}\) and \({\bar C_{{\rm{E\_SC}}}}\) into Eq. (13).
4.3 Asymptotic ergodic secrecy capacity of selection combining
In the scenario where γD ≫ 1, we have ln (1 + γD) ≈ lnγD. When \({\bar \gamma _{\rm{D}}} \to \infty \), we have \(\bar C_{\rm{D}}^\infty \) as
We consider the integral equation given by Eq. (4.352.1) in Gradshteyn and Ryzhik (2007):
where a > 0 and ψ(·) is the Digamma function (Gradshteyn and Ryzhik, 2007).
Using Eq. (50), we can derive
Considering FγD(x) ≈ 0 when \({\bar \gamma _{\rm{D}}} \to \infty \) and 1−FγD (γE) ≈ 1 given by Wang et al. (2014a; 2014b), we can write \(\bar C_{\rm{E}}^\infty \) as
The closed-form expression for the asymptotic ESC of SC \((\bar C_{{\rm{SC}}}^\infty )\) can be derived by substituting \(\bar C_{\rm{D}}^\infty \) and \(\bar C_{\rm{E}}^\infty \) into Eq. (13):
where
The asymptotic ESC of the SC scheme has the same form as Eq. (32), similar to that of the MRC scheme. When \({\bar \gamma _{\rm{D}}} \to \infty \), we have
Considering Eqs. (56) and (53), we can derive Eqs. (57) and (58) (shown on the bottom of this page), where
and
Further, by applying probability theory, we have
Similarly, we can obtain \(\sum\limits_{{\Omega _{{\rm{E1}}}}} {{1 \over {{\varsigma _{\rm{E}}}}} = 1} \).
Finally, we can achieve S∞ = 1 and \({\Omega _\infty } = - \psi (1) + \sum\limits_{{\Omega _{{\rm{D1}}}}} {{1 \over {{\varsigma _{\rm{D}}}}}{\rm{ln}}{\mkern 1mu} {\varsigma _{\rm{D}}} + \bar C_{\rm{E}}^\infty } \).
5 Numerical results and discussions
5.1 Maximal ratio combining scheme
In this subsection, we run Monte-Carlo simulations to validate our exact and asymptotic expressions for ESC under the MRC scheme. In each simulation, S sends 105 bits to D. In MRC simulation, we can use Eq. (23) in Gans (1971) or Eq. (3) which reveals the correlation between the actual and estimated channels to build the SNR of the receivers.
Fig. 1 plots ESC vs. \({\bar \gamma _{\rm{D}}}\) for various \({\bar \gamma _{\rm{E}}}\)’s over Rayleigh fading channels with weighting errors. It is evident that for a fixed \({\bar \gamma _{\rm{E}}}\), ESC increases with \({\bar \gamma _{\rm{D}}}\), as the channel state of the S-D link improves. It is shown that ESC can be improved when \({\bar \gamma _{\rm{E}}}\) degrades, because the channel state of the S-E link gets worse. Fig. 2 plots ESC vs. \({\bar \gamma _{\rm{D}}}\) for various M’s and ρE’s. There is a pronounced decrease when ρE increases. This can be explained by the fact that the increasing ρE can improve the channel estimation at E. In addition, it is easy to observe that ESC can be improved when M increases, because of the increased MRC diversity gain at D.
It can be seen from Figs. 1 and 2 that the asymptotic ESC matches very well the simulation and the exact analytical results in the high \({\bar \gamma _{\rm{D}}}\) regime.
Fig. 3 plots ESC vs. ρD for various N’s. It is clear that ESC increases with ρD. It is because increasing ρD can improve the channel estimation at D. One can also see that ESC decreases when N increases, because of the improved MRC diversity gain at E.
Further, it is obvious that simulation and analytical results match very well in Figs. 1–3.
5.2 Selection combining scheme
In this section, we run Monte-Carlo simulation to validate our exact and asymptotic expressions for ESC under the SC scheme. In each simulation, S sends 105 bits to D.
Fig. 4 indicates that ESC decreases when \({\bar \gamma _{\rm{E}}}\) increases, as the channel state of the S-E link, which degrades ESC, improves. Note that when \({\bar \gamma _{\rm{D}}}\) increases, the channel state of the S-D link improves. This explains why ESC increases with \({\bar \gamma _{\rm{D}}}\).
Fig. 5 illustrates the ESC of the SC scheme against \({\bar \gamma _{\rm{D}}}\) for various (M, N) combinations.
Obviously, there is an upward trend in ESC when M increases and N decreases, because the diversity gain of D increases and that of E decreases.
In addition, Figs. 4 and 5 show that our asymptotic ESC matches the analysis and simulation very well in the high \({\bar \gamma _{\rm{D}}}\) regime, proving the accuracy of our derivations. Further, it is clear that −Ω∞ of SC increases when M increases and N and \({\bar \gamma _{\rm{E}}}\) decrease. Ω∞ and are independent of \({\bar \gamma _{\rm{D}}}\). The reason can be explained by Eqs. (57) and (58).
Fig. 6 compares the secrecy performance of the SC and MRC schemes for various ρE’s. In the scenario with a fixed ρE, we can observe that the ESC of the MRC scheme outperforms the one of the SC scheme in the high ρD region. There is a cutoff, at about ρD = 0.15, of the lines for the MRC and SC schemes when ρE = 0.4.
6 Conclusions
In this paper, we have analyzed the ESC of the MRC/SC scheme in SIMO wiretap systems over Rayleigh fading channels with imperfect CSI. The exact and asymptotic closed-form expressions for ESC have been derived and verified through simulations. Further, the high SNR slope and high SNR power offset predict ESC accurately in the high SNR region.
References
Alouini, M.S., Goldsmith, A.J., 1999. Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans. Veh. Technol., 48(4): 1165–1181. http://dx.doi.org/10.1109/25.775366
Alves, H., DemoSouza, R., Debbah, M., et al., 2012. Performance of transmit antenna selection physical layer security schemes. IEEE Signal Process. Lett., 19(6): 372–375. http://dx.doi.org/10.1109/LSP.2012.2195490
Elkashlan, M., Wang, L., Duong, T.Q., et al., 2015. On the security of cognitive radio networks. IEEE Trans. Veh. Technol., 64(8): 3790–3795. http://dx.doi.org/10.1109/TVT.2014.2358624
Ferdinand, N.S., da Costa, D.B., Latva-aho, M., 2013. Effects of outdated CSI on the secrecy performance of MISO wiretap channels with transmit antenna selection. IEEE Commun. Lett., 17(5): 864–867. http://dx.doi.org/10.1109/LCOMM.2013.040213.122696
Gans, M.J., 1971. The effect of Gaussian error in maximal ratio combiners. IEEE Trans. Commun. Technol., 19(4): 492–500. http://dx.doi.org/10.1109/TCOM.1971.1090666
Gradshteyn, I.S., Ryzhik, I.M., 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, Salt Lake City, USA.
He, F., Man, H., Wang, W., 2011. Maximal ratio diversity combining enhanced security. IEEE Commun. Lett., 15(5): 509–511. http://dx.doi.org/10.1109/LCOMM.2011.030911.102343
Hu, Y., Tao, Y., 2015. Secrecy outage on transmit antenna selection with weighting errors at maximal-ratio combiners. IEEE Commun. Lett., 19(4): 597–600. http://dx.doi.org/10.1109/LCOMM.2015.2394786
Janarthanan, S., Bhaskar, V., 2013. Capacity analysis of Rayleigh fading channels in low signal-to-noise ratio regime for maximal ratio combining diversity because of combining errors. IET Commun., 7(8): 745–754. http://dx.doi.org/10.1049/iet-com.2012.0647
Khatalin, S., Fonseka, J.P., 2006. On the channel capacity in Rician and Hoyt fading environments with MRC diversity. IEEE Trans. Veh. Technol., 55(1): 137–141. http://dx.doi.org/10.1109/TVT.2005.861205
Khuong, H.V., Sofotasios, P.C., 2013. Exact bit-error-rate analysis of underlay decode-and-forward multi-hop cognitive networks with estimation errors. IET Commun., 7(18): 2122–2132. http://dx.doi.org/10.1049/iet-com.2013.0254
Lee, W.C.Y., 1990. Estimate of channel capacity in Rayleigh fading environment. IEEE Trans. Veh. Technol., 39(3): 187–189. http://dx.doi.org/10.1109/25.130999
Lei, H., Gao, C., Guo, Y., et al., 2015. On physical layer security over generalized Gamma fading channels. IEEE Commun. Lett., 19(7): 1257–1260. http://dx.doi.org/10.1109/LCOMM.2015.2426171
Lei, H., Zhang, H., Ansari, I.S., et al., 2016. Performance analysis of physical layer security over generalized-K fading channels using a mixture gamma distribution. IEEE Commun. Lett., 20(2): 408–411. http://dx.doi.org/10.1109/LCOMM.2015.2504580
Liu, H., Zhao, H., Jiang, H., et al., 2016. Physical-layer secrecy outage of spectrum sharing CR systems over fading channels. Sci. China Inf. Sci., 59(4):102308. http://dx.doi.org/10.1007/s11432-015-5451-2
Liu, Y., Wang, L., Duy, T.T., et al., 2015. Relay selection for security enhancement in cognitive relay networks. IEEE Wirel. Commun. Lett., 4(1): 46–49. http://dx.doi.org/10.1109/LWC.2014.2365808
Liu, Y., Wang, L., Zaidi, R., et al., 2016. Secure D2D communication in large-scale cognitive cellular networks: a wireless power transfer model. IEEE Trans. Commun., 64(1): 329–342. http://dx.doi.org/10.1109/TCOMM.2015.2498171
Pan, G., Tang, C., Li, T., et al., 2015. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun., 63(9): 3423–3433. http://dx.doi.org/10.1109/TCOMM.2015.2458317
Pan, G., Tang, C., Zhang, X., et al., 2016. Physical layer security over non-small scale fading channels. IEEE Trans. Veh. Technol., 65(3): 1326–1339. http://dx.doi.org/10.1109/TVT.2015.2412140
Rezki, Z., Khisti, A., Alouini, M.S., 2014. On the secrecy capacity of the wiretap channel with imperfect main channel estimation. IEEE Trans. Commun., 62(10): 3652–3664. http://dx.doi.org/10.1109/TCOMM.2014.2356482
Shiu, Y.S., Chang, S.Y., Wu, H.C., et al., 2011. Physical layer security in wireless networks: a tutorial. IEEE Wirel. Commun. Mag., 18(2): 66–74. http://dx.doi.org/10.1109/MWC.2011.5751298
Shrestha, A.P., Kwark, K.S., 2014. On maximal ratio diversity with weighting errors for physical layer security. IEEE Commun. Lett., 18(4): 580–583. http://dx.doi.org/10.1109/LCOMM.2014.043014.140071
Simon, M.K., Alouini, M.S., 2005. Digital Communications over Fading Channels (2nd Ed.). John Wiley, Hoboken, USA.
Sun, X., Wang, J., Xu, W., et al., 2012. Performance of secure communications over correlated fading channels. IEEE Signal Process. Lett., 19(8): 479–482. http://dx.doi.org/10.1109/LSP.2012.2203302
Tomiuk, B.R., Beaulieu, N.C., Abu-Dayya, A.A., 1999. General forms for maximal ratio diversity with weighting errors. IEEE Trans. Commun., 47(4): 488–492. http://dx.doi.org/10.1109/26.764914
Wang, L., Yang, N., Elkashlan, M., et al., 2014a. Physical layer security of maximal ratio combining in two-wave diffuse power fading channels. IEEE Trans. Inf. Foren. Sec., 9(2): 247–258. http://dx.doi.org/10.1109/TIFS.2013.2296991
Wang, L., Elkashlan, M., Huang, J., et al., 2014b. Secure transmission with antenna selection in MIMO Nakagami-m fading channels. IEEE Trans. Wirel. Commun., 13(11): 6054–6067. http://dx.doi.org/10.1109/TWC.2014.2359877
Yang, N., Yeoh, P.L., Elkashlan, M., et al., 2013a. MIMO wiretap channels: secure transmission using transmit antenna selection and receive generalized selection combining. IEEE Commun. Lett., 17(9): 1754–1757. http://dx.doi.org/10.1109/LCOMM.2013.071813.131048
Yang, N., Suraweera, H.A., Collings, I.B., et al., 2013b. Physical layer security of TAS/MRC with antenna correlation. IEEE Trans. Inf. Foren. Sec., 8(1): 254–259. http://dx.doi.org/10.1109/TIFS.2012.2223681
Yang, N., Yeoh, P.L., Elkashlan, M., et al., 2013c. Transmit antenna selection for security enhancement in MIMO wiretap channels. IEEE Trans. Commun., 61(1): 144–154. http://dx.doi.org/10.1109/TCOMM.2012.12.110670
Yang, N., Wang, L., Geraci, G., et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4): 20–27. http://dx.doi.org/10.1109/MCOM.2015.7081071
Zhang, X., Pan, G., Tang, C., et al., 2014. Performance analysis of physical layer security over independent/correlated log-normal fading channels. Telecommunication Networks and Applications Conf., p.23–27. http://dx.doi.org/10.1109/ATNAC.2014.7020868
Zhao, H., Pan, G., 2016. The analysis on secure communications for DF and RF relaying SIMO system with Gauss errors. Sci. China Inf. Sci., 46(3): 350–360. http://dx.doi.org/10.1360/N112015-00074
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 61401372) and the Fundamental Research Funds for the Central Universities, China (Nos. XDJK2015B023 and XDJK2016A011)
ORCID: Gao-feng PAN, http://orcid.org/0000-0003-1008-5717
Appendix: Derivation of the closed-form expressions for I4 and I5
Appendix: Derivation of the closed-form expressions for I4 and I5
Substituting the PDF of ρD into I4, we can obtain
By using Eq. (4.352.1) in Gradshteyn and Ryzhik (2007) and after some manipulations, we have
where ψ(·) is the Digamma function (Gradshteyn and Ryzhik, 2007).
Substituting χγE (γE) into I5, we have
By using Eq. (3.353.5) in Gradshteyn and Ryzhik (2007) and after some manipulations, we can obtain the closed-form expression for I5 as
where Ei(·) is the exponential integral function (Gradshteyn and Ryzhik, 2007).
Rights and permissions
About this article
Cite this article
Zhao, H., Tan, Yy., Pan, Gf. et al. Ergodic secrecy capacity of MRC/SC in single-input multiple-output wiretap systems with imperfect channel state information. Frontiers Inf Technol Electronic Eng 18, 578–590 (2017). https://doi.org/10.1631/FITEE.1500430
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500430
Key words
- Ergodic secrecy capacity (ESC)
- Maximal ratio combining (MRC)
- Weighting errors
- Physical layer security
- Selection combining (SC)
- Single-input multiple-output (SIMO)