[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47″ resolution

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure’s capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47″ (0.00013°), and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaltonen, L., Halonen, K.A.I., 2010. An analog drive loop for a capacitive MEMS gyroscope. Anal. Integr. Circ. Sig. Process., 63(3):465–476. http://dx.doi.org/10.1007/s10470-009-9395-6

    Article  Google Scholar 

  • Alper, S.E., Temiz, Y., Akin, T., 2008. A compact angular rate sensor system using a fully decoupled silicon-onglass MEMS gyroscope. J. Microelectromech. Syst., 17(6):1418–1429. http://dx.doi.org/10.1109/JMEMS.2008.2007274

    Article  Google Scholar 

  • Challoner, A.D., Ge, H.H., Liu, J.Y., 2014. Boeing disc resonator gyroscope. IEEE/ION Position, Location and Navigation Symp., p.504–514. http://dx.doi.org/10.1109/PLANS.2014.6851410

    Google Scholar 

  • Cui, F., Chen, W., Su, Y., et al., 2004. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology. SPIE, 5641:264–275. http://dx.doi.org/10.1117/12.575632

    Google Scholar 

  • Damrongsak, B., Kraft, M., 2006. Design and simulation of a micromachined electrostatically suspended gyroscope. IET Seminar on MEMS Sensors and Actuators, p.267–272. http://dx.doi.org/10.1049/ic:20060468

    Chapter  Google Scholar 

  • Fang, R., Lu, W., Tao, T., et al., 2012. A control and readout circuit with capacitive mismatch auto-compensation for MEMS vibratory gyroscope. IEEE 11th Int. Conf. on Solid-State and Integrated Circuit Technology, p.1–3. http://dx.doi.org/10.1109/ICSICT.2012.6467587

    Google Scholar 

  • Feng, L., Zhang, Z., Sun, Y., et al., 2011. Differential pickup circuit design of a kind of Z-axis MEMS quartz gyroscope. Proc. Eng., 15:999–1003. http://dx.doi.org/10.1016/j.proeng.2011.08.185

    Article  Google Scholar 

  • Gindila, M.V., Kraft, M., 2003. Electronic interface design for an electrically floating micro-disc. J. Micromech. Microeng., 13(4):S11–S16. http://dx.doi.org/10.1088/0960-1317/13/4/302

    Article  Google Scholar 

  • Hays, K., Schmidt, R., Wilson, W., et al., 2002. A submarine navigator for the 21st century. IEEE Position Location and Navigation Symp., p.179–188. http://dx.doi.org/10.1109/PLANS.2002.998906

    Google Scholar 

  • Houlihan, R., Kraft, M., 2002. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 12(4):495. http://dx.doi.org/10.1088/0960-1317/12/4/325

    Article  Google Scholar 

  • Huang, X.G., Chen, W.Y., Liu, W., et al., 2007. High resolution differential capacitance detection scheme for micro levitated rotor gyroscope. Chin. J. Aeronaut., 20(6):546–551. http://dx.doi.org/10.1016/S1000-9361(07)60080-6

    Article  Google Scholar 

  • Lam, Q.M., Stamatakos, N., Woodruff, C., et al., 2003. Gyro modeling and estimation of its random noise sources. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.1–11. http://dx.doi.org/10.2514/6.2003-5562

    Google Scholar 

  • Li, H., Liu, X., Wang, B., et al., 2014. Impact of assembly on signal detection from thin-wall rotors of micro-gyroscopes. AIP Adv., 4(3):031341. http://dx.doi.org/10.1063/1.4869618

    Article  Google Scholar 

  • Liu, J., Shen, Q., Qin, W., 2015. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines, 6(6):684–698. http://dx.doi.org/10.3390/mi6060684

    Article  Google Scholar 

  • Liu, K., Zhang, W.P., Chen, W.Y., et al., 2009. The development of micro-gyroscope technology. J. Micromech. Microeng., 19(11):113001. http://dx.doi.org/10.1088/0960-1317/19/11/113001

    Article  Google Scholar 

  • Liu, W., Chen, W.Y., Zhang, W.P., et al., 2008. Variablecapacitance micromotor with levitated diamagnetic rotor. Electron. Lett., 44(11):681–683. http://dx.doi.org/10.1049/el:20080528

    Article  Google Scholar 

  • Murakoshi, T., Endo, Y., Fukatsu, K., et al., 2003. Electrostatically levitated ring-shaped rotationalgyro/accelerometer. Jpn. J. Appl. Phys., 42(4S): 2468–2472. http://dx.doi.org/10.1143/JJAP.42.2468

    Article  Google Scholar 

  • Northemann, T., Maurer, M., Rombach, S., et al., 2010. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation. Sens. Actuat. A, 162(2):388–393. http://dx.doi.org/10.1016/j.sna.2010.05.034

    Article  Google Scholar 

  • Shearwood, C., Ho, K.Y., Williams, C.B., et al., 2000. Development of a levitated micromotor for application as a gyroscope. Sens. Actuat. A, 83(1-3):85–92. http://dx.doi.org/10.1016/S0924-4247(00)00292-2

    Article  Google Scholar 

  • Sung, W.T., Sung, S., Lee, J.Y., et al., 2008. Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test. J. Micromech. Microeng., 18(5):055028. http://dx.doi.org/10.1088/0960-1317/18/5/055028

    Article  Google Scholar 

  • Tsai, N.C., Huang, W.M., Chiang, C.W., 2009. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol., 15(4):493–503. http://dx.doi.org/10.1007/s00542-008-0769-y

    Article  Google Scholar 

  • Xia, D., Yu, C., Kong, L., 2014. The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1):1394–1473. http://dx.doi.org/10.3390/s140101394

    Article  Google Scholar 

  • Xia, D., Kong, L., Gao, H., 2015. Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes. Sensors, 15(7):16929–16955. http://dx.doi.org/10.3390/s150716929

    Article  Google Scholar 

  • Xu, H., Liu, X., Yin, L., 2015. A closed-loop S? interface for a high-Q micromechanical capacitive accelerometer with 200 ng/v Hz input noise density. IEEE J. Solid-State Circ., 50(9):2101–2112. http://dx.doi.org/10.1109/JSSC.2015.2428278

    Article  Google Scholar 

  • Xue, L., Jiang, C., Wang, L., et al., 2015. Noise reduction of MEMS gyroscope based on direct modeling for an angular rate signal. Micromachines, 6(2):266–280. http://dx.doi.org/10.3390/mi6020266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-feng Zhang.

Additional information

Project supported by the National Natural Basic Research Program (973) of China (No. 2012CB934104), the National Natural Science Foundation of China (No. 61071037), and the Natural Science Foundation of Heilongjiang Province, China (No. F201418)

ORCID: Hai-feng ZHANG, http://orcid.org/0000-0002-4917-746X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Xw., Weng, R. et al. Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47″ resolution. Frontiers Inf Technol Electronic Eng 18, 591–598 (2017). https://doi.org/10.1631/FITEE.1500454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500454

Key words

CLC number

Navigation