Abstract
Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure’s capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47″ (0.00013°), and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.
Similar content being viewed by others
References
Aaltonen, L., Halonen, K.A.I., 2010. An analog drive loop for a capacitive MEMS gyroscope. Anal. Integr. Circ. Sig. Process., 63(3):465–476. http://dx.doi.org/10.1007/s10470-009-9395-6
Alper, S.E., Temiz, Y., Akin, T., 2008. A compact angular rate sensor system using a fully decoupled silicon-onglass MEMS gyroscope. J. Microelectromech. Syst., 17(6):1418–1429. http://dx.doi.org/10.1109/JMEMS.2008.2007274
Challoner, A.D., Ge, H.H., Liu, J.Y., 2014. Boeing disc resonator gyroscope. IEEE/ION Position, Location and Navigation Symp., p.504–514. http://dx.doi.org/10.1109/PLANS.2014.6851410
Cui, F., Chen, W., Su, Y., et al., 2004. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology. SPIE, 5641:264–275. http://dx.doi.org/10.1117/12.575632
Damrongsak, B., Kraft, M., 2006. Design and simulation of a micromachined electrostatically suspended gyroscope. IET Seminar on MEMS Sensors and Actuators, p.267–272. http://dx.doi.org/10.1049/ic:20060468
Fang, R., Lu, W., Tao, T., et al., 2012. A control and readout circuit with capacitive mismatch auto-compensation for MEMS vibratory gyroscope. IEEE 11th Int. Conf. on Solid-State and Integrated Circuit Technology, p.1–3. http://dx.doi.org/10.1109/ICSICT.2012.6467587
Feng, L., Zhang, Z., Sun, Y., et al., 2011. Differential pickup circuit design of a kind of Z-axis MEMS quartz gyroscope. Proc. Eng., 15:999–1003. http://dx.doi.org/10.1016/j.proeng.2011.08.185
Gindila, M.V., Kraft, M., 2003. Electronic interface design for an electrically floating micro-disc. J. Micromech. Microeng., 13(4):S11–S16. http://dx.doi.org/10.1088/0960-1317/13/4/302
Hays, K., Schmidt, R., Wilson, W., et al., 2002. A submarine navigator for the 21st century. IEEE Position Location and Navigation Symp., p.179–188. http://dx.doi.org/10.1109/PLANS.2002.998906
Houlihan, R., Kraft, M., 2002. Modelling of an accelerometer based on a levitated proof mass. J. Micromech. Microeng., 12(4):495. http://dx.doi.org/10.1088/0960-1317/12/4/325
Huang, X.G., Chen, W.Y., Liu, W., et al., 2007. High resolution differential capacitance detection scheme for micro levitated rotor gyroscope. Chin. J. Aeronaut., 20(6):546–551. http://dx.doi.org/10.1016/S1000-9361(07)60080-6
Lam, Q.M., Stamatakos, N., Woodruff, C., et al., 2003. Gyro modeling and estimation of its random noise sources. AIAA Guidance, Navigation, and Control Conf. and Exhibit, p.1–11. http://dx.doi.org/10.2514/6.2003-5562
Li, H., Liu, X., Wang, B., et al., 2014. Impact of assembly on signal detection from thin-wall rotors of micro-gyroscopes. AIP Adv., 4(3):031341. http://dx.doi.org/10.1063/1.4869618
Liu, J., Shen, Q., Qin, W., 2015. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines, 6(6):684–698. http://dx.doi.org/10.3390/mi6060684
Liu, K., Zhang, W.P., Chen, W.Y., et al., 2009. The development of micro-gyroscope technology. J. Micromech. Microeng., 19(11):113001. http://dx.doi.org/10.1088/0960-1317/19/11/113001
Liu, W., Chen, W.Y., Zhang, W.P., et al., 2008. Variablecapacitance micromotor with levitated diamagnetic rotor. Electron. Lett., 44(11):681–683. http://dx.doi.org/10.1049/el:20080528
Murakoshi, T., Endo, Y., Fukatsu, K., et al., 2003. Electrostatically levitated ring-shaped rotationalgyro/accelerometer. Jpn. J. Appl. Phys., 42(4S): 2468–2472. http://dx.doi.org/10.1143/JJAP.42.2468
Northemann, T., Maurer, M., Rombach, S., et al., 2010. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation. Sens. Actuat. A, 162(2):388–393. http://dx.doi.org/10.1016/j.sna.2010.05.034
Shearwood, C., Ho, K.Y., Williams, C.B., et al., 2000. Development of a levitated micromotor for application as a gyroscope. Sens. Actuat. A, 83(1-3):85–92. http://dx.doi.org/10.1016/S0924-4247(00)00292-2
Sung, W.T., Sung, S., Lee, J.Y., et al., 2008. Development of a lateral velocity-controlled MEMS vibratory gyroscope and its performance test. J. Micromech. Microeng., 18(5):055028. http://dx.doi.org/10.1088/0960-1317/18/5/055028
Tsai, N.C., Huang, W.M., Chiang, C.W., 2009. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst. Technol., 15(4):493–503. http://dx.doi.org/10.1007/s00542-008-0769-y
Xia, D., Yu, C., Kong, L., 2014. The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1):1394–1473. http://dx.doi.org/10.3390/s140101394
Xia, D., Kong, L., Gao, H., 2015. Design and analysis of a novel fully decoupled tri-axis linear vibratory gyroscope with matched modes. Sensors, 15(7):16929–16955. http://dx.doi.org/10.3390/s150716929
Xu, H., Liu, X., Yin, L., 2015. A closed-loop S? interface for a high-Q micromechanical capacitive accelerometer with 200 ng/v Hz input noise density. IEEE J. Solid-State Circ., 50(9):2101–2112. http://dx.doi.org/10.1109/JSSC.2015.2428278
Xue, L., Jiang, C., Wang, L., et al., 2015. Noise reduction of MEMS gyroscope based on direct modeling for an angular rate signal. Micromachines, 6(2):266–280. http://dx.doi.org/10.3390/mi6020266
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Basic Research Program (973) of China (No. 2012CB934104), the National Natural Science Foundation of China (No. 61071037), and the Natural Science Foundation of Heilongjiang Province, China (No. F201418)
ORCID: Hai-feng ZHANG, http://orcid.org/0000-0002-4917-746X
Rights and permissions
About this article
Cite this article
Li, H., Liu, Xw., Weng, R. et al. Micro-angle tilt detection for the rotor of a novel rotational gyroscope with a 0.47″ resolution. Frontiers Inf Technol Electronic Eng 18, 591–598 (2017). https://doi.org/10.1631/FITEE.1500454
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500454