Abstract
This article describes a study of the satellite module layout problem (SMLP), which is a three-dimensional (3D) layout optimization problem with performance constraints that has proved to be non-deterministic polynomial-time hard (NP-hard). To deal with this problem, we convert it into an unconstrained optimization problem using a quasi-physical strategy and the penalty function method. The energy landscape paving (ELP) method is a class of Monte-Carlo-based global optimization algorithm that has been successfully applied to solve many optimization problems. ELP can search for low-energy layouts via a random walk in complex energy landscapes. However, when ELP falls into the narrow and deep valleys of an energy landscape, it is difficult to escape. By putting forward a new update mechanism of the histogram function in ELP, we obtain an improved ELP method which can overcome this drawback. By incorporating the gradient method with local search into the improved ELP method, a new global search optimization method, nELP, is proposed for SMLP. Two representative instances from the literature are tested. Computational results show that the proposed nELP algorithm is an effective method for solving SMLP with performance constraints.
Similar content being viewed by others
References
Bansal, N., Han, X., Iwama, K., et al., 2013. A harmonic algorithm for the 3D strip packing problem. SIAM J. Comput., 42(2): 579–592. http://dx.doi.org/10.1137/070691607
Cagan, J., Shimada, K., Yin, S., 2002. A survey of computational approaches to three-dimensional layout problems. Comput. Aided Des., 34(8): 597–611. http://dx.doi.org/10.1016/S0010-4485(01)00109-9
Chen, Y., Teng, H.F., 2010. Coevolutionary algorithm with coarse-to-fine grain strategy and its application to layout design of satellite module. J. Dalian Univ. Tech., 50(6): 931–936 (in Chinese).
Cuco, A.P.C., de Sousa, F.L., Neto, A.J.S., 2014. A multiobjective methodology for spacecraft equipment layouts. Optim. Eng., 16(1): 165–181. http://dx.doi.org/10.1007/s11081-014-9252-z
del Valle, A.M., de Queiroz, T.A., Miyazawa, F.K., et al., 2012. Heuristics for two-dimensional knapsack and cutting stock problems with items of irregular shape. Expert Syst. Appl., 39(16): 12589–12598. http://dx.doi.org/10.1016/j.eswa.2012.05.025
Galiev, S.I., Lisafina, M.S., 2013. Linear models for the approximate solution of the problem of packing equal circles into a given domain. Eur. J. Oper. Res., 230(3): 505–514. http://dx.doi.org/10.1016/j.ejor.2013.04.050
Glover, F., 1990a. Tabu search—part I. Informs J. Comput., 1(1): 89–98.
Glover, F., 1990b. Tabu search—part II. Orsa J. Comput., 2(1): 4–32.
Hamacher, K., 2007. Energy landscape paving as a perfect optimization approach under detrended fluctuation analysis. Phys. A, 378(2): 307–314. http://dx.doi.org/10.1016/j.physa.2006.11.071
Hansmann, U.H.E., Wille, L.T., 2002. Global optimization by energy landscape paving. Phys. Rev. Lett., 88(6):068105.
He, K., Zeng, M.D., Xu, R.C., et al., 2013. A quasi-physical algorithm based on coarse and fine adjustment for solving circles packing problem with constraints of equilibrium. Chin. J. Comput., 36(6): 1224–1234. http://dx.doi.org/10.3724/SP.J.1013.2013.01224
Huo, J.Z., Shi, Y.J., Teng, H.F., 2006. Layout design of a satellite module using a human-guided genetic algorithm. IEEE Int. Conf. on Computational Intelligence and Security, p.230–235.
Jansen, K., Prädel, L., 2014. A new asymptotic approximation algorithm for 3-dimensional strip packing. LNCS, 8327: 327–338. http://dx.doi.org/10.1007/978-3-319-04298-5_29
Li, Z.Q., Zhang, H.L., Zheng, J.H., et al., 2011. Heuristic evolutionary approach for weighted circles layout. Commun. Comput. Inform. Sci., 86:324–331. http://dx.doi.org/10.1007/978-3-642-19853-3_47
Liu, J.F., Xue, S.J., Liu, Z.X., et al., 2009. An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle. Comput. Ind. Eng., 57(3): 1144–1149. http://dx.doi.org/10.1016/j.cie.2009.05.010
Liu, J.F., Li, G., Geng, H.T., 2011. A new heuristic algorithm for the circular packing problem with equilibrium constraints. Sci. China Inform. Sci., 54(8): 1572–1584. http://dx.doi.org/10.1007/s11432-4351-3
Liu, J.F, Hao, L., Li, G., et al., 2016. Muti-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search. Front. Inform. Technol. Electron. Eng., 17(6): 527–542. http://dx.doi.org/10.1631/FITEE.1500292
Liu, Z.W., Teng, H.F., 2008. Human-computer cooperative layout design method and its application. Comput. Ind. Eng., 55(4): 735–757. http://dx.doi.org/10.1016/j.cie.2006.11.007
Lodi, A., Martello, S., Monaci, M., 2002. Two-dimensional packing problems: a survey. Eur. J. Oper. Res., 141(2): 241–252. http://dx.doi.org/10.1016/S0377-2217(02)00123-6
Martello, S., Vigo, D., 2000. The three-dimensional bin packing problem. Oper. Res., 48(2): 256–267.
Rakshit, A., Bandyopadhyay, P., 2013. Finding low energy minima of (H2O)25 and (H2O)30 with temperature basin paving Monte Carlo method with effective fragment potential: new ‘global minimum’ and graph theoretical characterization of low energy structures. Comput. Theor. Chem., 1021:206–214. http://dx.doi.org/10.1016/j.comptc.2013.07.023
Schug, A., Wenzel, W., Hansmann, U.H.E., 2005. Energy landscape paving simulations of the trp-cage protein. J. Chem. Phys., 122(19):194711.
Shanker, S., Bandyopadhyay, P., 2011. Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25. Phys. Chem. A., 115(42): 11866–11875. http://dx.doi.org/10.1021/jp2073864
Silveira, M.E., Vieira, S.M., Sousa, J.M.D.C., 2013. An ACO algorithm for the 3D bin packing problem in the steel industry. LNCS, 7906:535–544. http://dx.doi.org/10.1007/978-3-642-38577-3_55
Sun, Z.G., Teng, H.F., 2003. Optimal layout design of a satellite module. Eng. Optim., 35(5): 513–529. http://dx.doi.org/10.1080/03052150310001602335
Sun, Z.G., Teng, H.F., Liu, Z., 2003. Several key problems in automatic layout design of spacecraft modules. Prog. Nat. Sci., 13(11): 801–808.
Teng, H.F., Chen, Y., Zeng, W., et al., 2010. A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module layout design. IEEE Trans. Evol. Comput., 14(3): 438–455. http://dx.doi.org/10.1109/TEVC.2009.2033585
Thomas, J., Chaudhari, N.S., 2014. Design of efficient packing system using genetic algorithm based on hyper heuristic approach. Adv. Eng. Softw., 73(5): 45–52. http://dx.doi.org/10.1016/j.advengsoft.2014.03.003
Tsai, J.F., Wang, P.C., Lin, M.H., 2014. A global optimization approach for solving three-dimensional open dimension rectangular packing problems. Optimization, 64(12): 1–18. http://dx.doi.org/10.1080/02331934.2013.877906
Wang, Y.S., Teng, H.F., 2009. Knowledge fusion design method: satellite module layout. Chin. J. Aeronaut., 22(1): 32–42. http://dx.doi.org/10.1016/S1000-9361(08)60066-7
Wang, Y.S., Yue, B.X., Teng, H.F., et al., 2011. Satellite payloads configuration design using multi-agent system based on ant colony optimization. IEEE Int. Conf. on soft Computing and Pattern Recognition, p.336–341.
Zhan, L.X., Jeff, Z., Chen, Y., et al., 2006. Monte Carlo basin paving: an improved global optimization method. Phys. Rev. E., 73(1pt2):015701.
Zhang, B., Teng, H.F., 2005. Particle swarm optimization based on pyramid model for satellite module layout. Chin. J. Mech. Eng., 18(4): 530–536.
Zhang, B., Teng, H.F., Shi, Y.J., 2008. Layout optimization of satellite module using soft computing techniques. Appl. Soft Comput., 8(1): 507–521. http://dx.doi.org/10.1016/j.asoc.2007.03.004
Zhang, D.F., Deng, A.S., 2005. An effective hybrid algorithm for the problem of packing circles into a larger containing circle. Comput. Oper. Res., 32(8): 1941–1951. http://dx.doi.org/10.1016/j.cor.2003.12.006
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 61373016), the Six Talent Peaks Project of Jiangsu Province, China (No. DZXX-041), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Natural Science Foundation of Jiangsu Province, China (No. BK20141005)
ORCID: Juan HUANG, http://orcid.org/0000-0003-2830-7699
Rights and permissions
About this article
Cite this article
Liu, Jf., Huang, J., Li, G. et al. A new energy landscape paving heuristic for satellite module layouts. Frontiers Inf Technol Electronic Eng 17, 1031–1043 (2016). https://doi.org/10.1631/FITEE.1500302
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1500302