[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Real-time road traffic state prediction based on ARIMA and Kalman filter

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brockwell, P.J., Davis, R.A., 2006. ARMA models. In: Casella, G., Fienberg, S., Olkin, I. (Eds.), Introduction to Time Series and Forecasting. Springer Science & Business Media, Berlin, Germany, p.83–100.

    Google Scholar 

  • Chang, T.H., Chueh, C.H., Yang, L.K., 2011. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Contr. Eng. Pract., 19(12):1479–1489. http://dx.doi.org/10.1016/j.conengprac.2011.08.007

    Article  Google Scholar 

  • Chen, B.K., Xie, Y.B., Tong, W., et al., 2012. A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems. Phys. A, 91(8):2730–2739. http://dx.doi.org/10.1016/j.physa.2011.12.032

    Article  Google Scholar 

  • Chen, C.Y., Hu, J.M., Meng, Q., et al., 2011. Short-time traffic flow prediction with ARIMA-GARCH model. IEEE Intelligent Vehicles Symp., p.607–612. http://dx.doi.org/10.1109/IVS.2011.5940418

    Google Scholar 

  • Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat., 13(3):134–144. http://dx.doi.org/10.1198/073500102753410444

    MathSciNet  Google Scholar 

  • Dong, C.F., Ma, X., Wang, G.W., et al., 2009. Prediction feedback in intelligent traffic systems. Phys., 388(21): 4651–4657. http://dx.doi.org/10.1016/j.physa.2009.07.018

    Google Scholar 

  • Dong, C.F., Ma, X., Wang, B.H., 2010. Weighted congestion coefficient feedback in intelligent transportation systems. Phys. Lett. A, 374(11):1326–1331. http://dx.doi.org/10.1016/j.physleta.2010.01.011

    Article  Google Scholar 

  • Durbin, J., Koopman, S.J., 2012. Time Series Analysis by State Space Methods. Oxford University Press, London, UK.

    Book  Google Scholar 

  • Guo, J.H., Huang, W., Williams, B.M., 2014. Adaptive Kal-man filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C, 43:50–64. http://dx.doi.org/10.1016/j.trc.2014.02.006

    Article  Google Scholar 

  • Hoong, P.K., Tan, I.K.T., Chien, O.K., et al., 2012. Road traffic prediction using Bayesian networks. IET Int. Conf. on Wireless Communications and Applications, p.1–5. http://dx.doi.org/10.1049/cp.2012.2098

    Google Scholar 

  • Kirchgässner, G., Wolters, J., Hassler, U., 2012. Introduction to Modern Time Series Analysis. Springer Science & Business Media, Berlin, Germany.

    MATH  Google Scholar 

  • Kumar, K., Parida, M., Katiyar, V.K., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Proc.-Soc. Behav. Sci., 104:755–764. http://dx.doi.org/10.1016/j.sbspro.2013.11.170

    Article  Google Scholar 

  • Lin, L., Li, Y., Sadek, A., 2013. A k nearest neighbor based local linear wavelet neural network model for online short-term traffic volume prediction. Proc.-Soc. Behav. Sci., 96:2066–2077. http://dx.doi.org/10.1016/j.sbspro.2013.08.223

    Article  Google Scholar 

  • Liu, H., Tian, H.Q., Li, Y.F., 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy, 98:415–424. http://dx.doi.org/10.1016/j.apenergy.2012.04.001

    Article  Google Scholar 

  • Liu, J.Y., Wang, W.D., Gong, X.Y., et al., 2012. A hybrid model based on Kalman filter and neutral network for traffic prediction. IEEE 2nd Int. Conf. on Cloud Compu-ting and Intelligent Systems, p.533–536. http://dx.doi.org/10.1109/CCIS.2012.6664231

    Google Scholar 

  • Liu, X.L., Jia, P., Wu, S.H., et al., 2011. Short-term traffic flow forecasting based on multi-dimensional parameters. J. Transp. Syst. Eng. Inform. Technol., 11(4):140–146 (in Chinese).

    Google Scholar 

  • Lv, L., Chen, M., Liu, Y., et al., 2015. A plane moving average algorithm for short-term traffic flow prediction. In: Cau, T., Lim, E.P., Zhou, Z.H., et al. (Eds.), Advances in Knowledge Discovery and Data Mining. Springer Int. Publishing, Cham, Switzerland, p.357–369. http://dx.doi.org/10.1007/978-3-319-18032-8_28

    Chapter  Google Scholar 

  • Ma, T., Zhou, Z., Abdulhai, B., 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transp. Res. Part B, 76:27–47. http://dx.doi.org/10.1016/j.trb.2015.02.008

    Article  Google Scholar 

  • Ma, X.L., Tao, Z.M., Wang, Y.H., et al., 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C, 54:187–197. http://dx.doi.org/10.1016/j.trc.2015.03.014

    Article  Google Scholar 

  • Min, W., Wynter, L., 2011. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C, 19(4):606–616. http://dx.doi.org/10.1016/j.trc.2010.10.002

    Article  Google Scholar 

  • Moretti, F., Pizzuti, S., Panzieri, S., et al., 2015. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 167:3–7. http://dx.doi.org/10.1016/j.neucom.2014.08.100

    Article  Google Scholar 

  • Ojeda, L.L., Kibangou, A.Y., de Wit, C.C., 2013. Adaptive Kalman filtering for multi-step ahead traffic flow predic-tion. IEEE American Control Conf., p.4724–4729. http://dx.doi.org/10.1109/ACC.2013.6580568

    Google Scholar 

  • Pan, T.L., Sumalee, A., Zhong, R.X., et al., 2013. Short-term traffic state prediction based on temporal–spatial correla-tion. IEEE Trans. Intell. Transp. Syst., 14(3):1242–1254. http://dx.doi.org/10.1109/TITS.2013.2258916

    Article  Google Scholar 

  • Park, J., Li, D., Murphey, Y.L., et al., 2011. Real time vehicle speed prediction using a neural network traffic model. IEEE Int. Joint Conf. on. Neural Networks, p.2991–2996. http://dx.doi.org/10.1109/IJCNN.2011.6033614

    Google Scholar 

  • Qi, Y., Ishak, S., 2014. A hidden Markov model for short term prediction of traffic conditions on freeways. Transp. Res. Part C, 43:95–111. http://dx.doi.org/10.1016/j.trc.2014.02.007

    Article  Google Scholar 

  • Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C, 10(4):303–321. http://dx.doi.org/10.1016/S0968-090X(02)00009-8

    Article  Google Scholar 

  • Sommer, M., Tomforde, S., Haehner, J., 2015. A systematic study on forecasting of traffic flows with artificial neural networks. Proc. 28th Int. Conf. on. Architecture of Computing Systems, p.1–8.

    Google Scholar 

  • Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Opti-mized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C, 13(3):211–234. http://dx.doi.org/10.1016/j.trc.2005.04.007

    Article  Google Scholar 

  • Wang, J., Shi, Q.X., 2013. Short-term traffic speed forecasting hybrid model based on chaos–wavelet analysis-support vector machine theory. Transp. Res. Part C, 27:219–232. http://dx.doi.org/10.1016/j.trc.2012.08.004

    Article  Google Scholar 

  • Zhang, L., Ma, J., Sun, J., 2012. Examples of validating an adaptive Kalman filter model for short-term traffic flow prediction. 12th Int. Conf. of Transportation Professionals, p.912–922. http://dx.doi.org/10.1061/9780784412442.094

    Google Scholar 

  • Zhang, L., Liu, Q.C., Yang, W.C., et al., 2013. An improved k-nearest neighbor model for short-term traffic flow pre-diction. Proc.-Soc. Behav. Sci., 96:653–662. http://dx.doi.org/10.1016/j.sbspro.2013.08.076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-wei Xu.

Additional information

Project supported by the National Science & Technology Pillar Program (No. 2014BAG01B02)

ORCID: Dong-wei XU, http://orcid.org/0000-0003-2693-922X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Dw., Wang, Yd., Jia, Lm. et al. Real-time road traffic state prediction based on ARIMA and Kalman filter. Frontiers Inf Technol Electronic Eng 18, 287–302 (2017). https://doi.org/10.1631/FITEE.1500381

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500381

Keywords

CLC number

Navigation