[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unnormalized and normalized forms of gefura measures in directed and undirected networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In some networks nodes belong to predefined groups (e.g., authors belong to institutions). Common network centrality measures do not take this structure into account. Gefura measures are designed as indicators of a node’s brokerage role between such groups. They are defined as variants of betweenness centrality and consider to what extent a node belongs to shortest paths between nodes from different groups. In this article we make the following new contributions to their study: (1) We systematically study unnormalized gefura measures and show that, next to the ‘structural’ normalization that has hitherto been applied, a ‘basic’ normalization procedure is possible. While the former normalizes at the level of groups, the latter normalizes at the level of nodes. (2) Treating undirected networks as equivalent to symmetric directed networks, we expand the definition of gefura measures to the directed case. (3) It is shown how Brandes’ algorithm for betweenness centrality can be adjusted to cover these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin, R.H., 1972. From cohomology in physics to qconnectivity in social science. Int. J. Man-Mach. Stud., 4(2):139–167. [doi:10.1016/S0020-7373(72)80029-4]

    Article  MathSciNet  Google Scholar 

  • Barrat, A., Barthélemy, M., Pastor-Satorras, R., et al., 2004. The architecture of complex weighted networks. PNAS, 101(11):3747–3752. [doi:10.1073/pnas.0400087101]

    Article  Google Scholar 

  • Boccaletti, S., Bianconi, G., Criado, R., et al., 2014. The structure and dynamics of multilayer networks. Phys. Rep., 544(1):1–122. [doi:10.1016/j.physrep.2014.07.001]

    Article  MathSciNet  Google Scholar 

  • Brainard, W.C., Tobin, J., 1968. Econometric models: their problems and usefulness. Pitfalls in financial model building. Amer. Econ. Rev., 58(2):99–122.

    Google Scholar 

  • Brandes, U., 2001. A faster algorithm for betweenness centrality. J. Math. Sociol., 25(2):163–177. [doi:10.1080/0022250X.2001.9990249]

    Article  MATH  Google Scholar 

  • Brandes, U., 2008. On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw., 30(2):136–145. [doi:10.1016/j.socnet.2007.11.001]

    Article  MathSciNet  Google Scholar 

  • Burt, R.S., 2004. Structural holes and good ideas. Amer. J. Sociol., 110(2):349–396. [doi:10.1086/421787]

    Article  Google Scholar 

  • Chen, L.X., Rousseau, R., 2008. Q-measures for binary divided networks: bridges between German and English institutes in publications of the J. Fluid Mech. Scientometr., 74(1):57–69. [doi:10.1007/s11192-008-0103-6]

    Google Scholar 

  • Christensen, C., Albert, R., 2007. Using graph concepts to understand the organization of complex systems. Int. J. Bifurc. Chaos, 17(7):2201–2214. [doi:10.1142/S021812740701835X]

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, Y., 2011. Scientific collaboration and endorsement: network analysis of coauthorship and citation networks. J. Inform., 5(1):187–203. [doi:10.1016/j.joi.2010.10.008]

    Article  Google Scholar 

  • Flom, P.L., Friedman, S.R., Strauss, S., et al., 2004. A new measure of linkage between two sub-networks. Connections, 26(1):62–70.

    Google Scholar 

  • Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41.

    Article  Google Scholar 

  • Freeman, L.C., Borgatti, S.P., White, D.R., 1991. Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw., 13(2):141–154. [doi:10.1016/0378-8733(91)90017-N]

    Article  MathSciNet  Google Scholar 

  • Gould, R.V., Fernandez, R.M., 1989. Structures of mediation: a formal approach to brokerage in transaction networks. Sociol. Method., 19:89–126. [doi:10.2307/270949]

    Article  Google Scholar 

  • Guimerà, R., Amaral, L.A.N., 2005. Functional cartography of complex metabolic networks. Nature, 433:895–900. [doi:10.1038/nature03288]

    Article  Google Scholar 

  • Guimerà, R., Mossa, S., Turtschi, A., et al., 2005. The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. PNAS, 102(22):7794–7799. [doi:10.1073/pnas.0407994102]

    Article  MATH  Google Scholar 

  • Guns, R., Liu, Y.X., 2010. Scientometric research in China in context of international collaboration. Proc. 6th Int. Conf. on Scientometrics and University Evaluation, p.112–115.

    Google Scholar 

  • Guns, R., Rousseau, R., 2009. Gauging the bridging function of nodes in a network: Q-measures for networks with a finite number of subgroups. Proc. 12th ISSI, p.131–142.

    Google Scholar 

  • Guns, R., Liu, Y.X., Mahbuba, D., 2011. Q-measures and betweenness centrality in a collaboration network: a case study of the field of informetrics. Scientometrics, 87(1):133–147. [doi:10.1007/s11192-010-0332-3]

    Article  Google Scholar 

  • Liu, Y.X., Guns, R., Rousseau, R., 2013. A binary tree as a basic model for studying hierarchies using Q-measures. SRELS J. Inform. Manag., 50(5):521–528.

    Google Scholar 

  • Newman, M.E.J., Girvan, M., 2004. Finding and evaluating community structure in networks. Phys. Rev. E, 69: 026113.1–026113.15. [doi:10.1103/PhysRevE.69.026113]

    Google Scholar 

  • Otte, E., Rousseau, R., 2002. Social network analysis: a powerful strategy, also for the information sciences. J. Inform. Sci., 28(6):441–453. [doi:10.1177/016555150202800601]

    Article  Google Scholar 

  • Rousseau, R., 2005. Q-measures for binary divided networks: an investigation within the field of informetrics. Proc. Amer. Soc. Inform. Sci. Technol., 42(1):675–696.

    Google Scholar 

  • Rousseau, R., Zhang, L., 2008. Betweenness centrality and Qmeasures in directed valued networks. Scientometrics, 75(3):575–590. [doi:10.1007/s11192-007-1772-2]

    Article  Google Scholar 

  • Rousseau, R., Liu, Y.X., Guns, R., 2013. Mathematical properties of Q-measures. J. Inform., 7(3):737–745. [doi:10.1016/j.joi.2013.06.002]

    Article  Google Scholar 

  • Rousseau, R., Liu, Y.X., Guns, R., 2014. An addendum and correction to “Mathematical properties of Q-measures” (vol. 7, issue 3, pp.737–745). J. Inform., 8(3):486–490. [doi:10.1016/j.joi.2014.01.004]

    Article  Google Scholar 

  • Rousseau, R., Guns, R., Liu, Y.X., 2015. Gauging the bridging function of nodes in a network: the gefura measure. Proc. 8th Int. Conf. on Scientometrics and University Evaluation, in press.

    Google Scholar 

  • Sakai, T., 2007. On the reliability of information retrieval metrics based on graded relevance. Inform. Process. Manag., 43(2):531–548. [doi:10.1016/j.ipm.2006.07.020]

    Article  Google Scholar 

  • Wasserman, S., Faust, K., 1994. Social Network Analysis: Methods and Applications. Cambridge University Press, UK.

    Book  Google Scholar 

  • Zhang, W.L., Yin, L.C., Pang, J., 2009. The application of Qmeasure to gender study in cooperation network. Sci. Technol. Progr. Pol., 26(15):100–103 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Rousseau.

Additional information

Project supported by the National Natural Science Foundation of China (No. 71173154)

ORCID: Raf GUNS, http://orcid.org/0000-0003-3129-0330; Ronald ROUSSEAU, http://orcid.org/0000-0002-3252-2538

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guns, R., Rousseau, R. Unnormalized and normalized forms of gefura measures in directed and undirected networks. Frontiers Inf Technol Electronic Eng 16, 311–320 (2015). https://doi.org/10.1631/FITEE.1400425

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400425

Key words

CLC number

Navigation