[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Automatic Speech Recognition System with Output-Gate Projected Gated Recurrent Unit
Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences">Gaofeng CHENG Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences">Pengyuan ZHANGJi XU
Author information
JOURNAL FREE ACCESS

2019 Volume E102.D Issue 2 Pages 355-363

Details
Abstract

The long short-term memory recurrent neural network (LSTM) has achieved tremendous success for automatic speech recognition (ASR). However, the complicated gating mechanism of LSTM introduces a massive computational cost and limits the application of LSTM in some scenarios. In this paper, we describe our work on accelerating the decoding speed and improving the decoding accuracy. First, we propose an architecture, which is called Projected Gated Recurrent Unit (PGRU), for ASR tasks, and show that the PGRU can consistently outperform the standard GRU. Second, to improve the PGRU generalization, particularly on large-scale ASR tasks, we propose the Output-gate PGRU (OPGRU). In addition, the time delay neural network (TDNN) and normalization methods are found beneficial for OPGRU. In this paper, we apply the OPGRU for both the acoustic model and recurrent neural network language model (RNN-LM). Finally, we evaluate the PGRU on the total Eval2000 / RT03 test sets, and the proposed OPGRU single ASR system achieves 0.9% / 0.9% absolute (8.2% / 8.6% relative) reduction in word error rate (WER) compared to our previous best LSTM single ASR system. Furthermore, the OPGRU ASR system achieves significant speed-up on both acoustic model and language model rescoring.

Content from these authors
© 2019 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top