Abstract
The cleanliness of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. Implementing hydrogen-powered fuel cells on a significant scale, however, requires major advances in hydrogen production, storage, and use. Splitting water renewably offers the most plentiful and climate-friendly source of hydrogen and can be achieved through electrolytic, photochemical, or biological means. Whereas presently available hydride compounds cannot easily satisfy the competing requirements for on-board storage of hydrogen for transportation, nanoscience offers promising new approaches to this challenge. Fuel cells offer potentially efficient production of electricity for transportation and grid distribution, if cost and performance challenges of components can be overcome. Hydrogen offers a variety of routes for achieving a transition to a mix of renewable fuels.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M.S. Dresselhaus, G.W. Crabtree, M.V. Buchanan, Eds., Basic Research Needs for the Hydrogen Economy (Office of Basic Energy Sciences, Department of Energy, Washington, DC, 2003; www.sc.doe.gov/bes/reports/abstracts.html#NHE) (accessed January 2008).
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (The National Academy Press, Washington, DC, 2004; http://books.nap.edu/catalog.php?record_id=10922) (accessed January 2008).
G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57(12), 39 (2004).
R.L Cohen, J.H. Wernick, Science 214, 1081 (1981).
International Energy Outlook 2006, U.S. Energy Information Administration; www.eia.doe.gov/oiaf/archive/ieo06/index.html (accessed January 2008).
J. Ivy, “Summary of Electrolytic Hydrogen Production” (NREL/MP-560– 35948, 2004; www1.eere.energy.gov/hydrogenandfuelcells/hydrogen_publications.html) (accessed January 2008).
M.Z. Jacobson, W.G. Colella, D.M. Golden, Science 308, 1901 (2007).
B. Esper, A. Badura, M. Rögner, Trends Plant Sci. 11, 543 (2006).
K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 303, 1831 (2004).
C. Tard, X. Liu, S.K. Ibrahim, M. Bruschi, L. De Gioia, S.C. Davies, X. Yang, L.-S. Wang, G. Sawers, C.J. Pickett, Nature 433, 610 (2005).
S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S.C. Menon, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada, R. Kuroki, A. Dinuclear, Science 316, 585 (2007).
P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).
P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, J. Phys. Chem. B 110, 25451 (2006).
J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006).
M. Matsuoka, M. Kitano, M. Takeuchi, Koichiro, M. Anpo, J.M. Thomas, Catal. Today 122, 51 (2007).
X. Xu, Y. Xiao, C. Qiao, Energy Fuels 21, 1688 (2007).
P. Chiesa, S. Consonni, T. Kreutz, R. Williams, Int. J. Hydrogen Energy 30, 747 (2005).
C. Perkins, A.W. Weimer, Int. J. Hydrogen Energy 29, 1587 (2004).
T.M. Nenoff, R.J. Spontak, C.M. Aberg, MRS Bull. 31, 705 (2006).
S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaza, Catal. Today 120, 246 (2007).
P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003).
B. Kiran, A.K. Kandalama, P. Jena, J. Chem. Phys. 124, 224703 (2006).
S.V. Alapati, J.K. Johnson, D.S. Sholl, Phys. Chem. Chem. Phys. 9, 1438 (2007).
J. Greeley, M. Mavrikakis, Catal. Today 111, 52 (2006).
W. Grochala, P.P. Edwards, Chem. Rev. 104, 1283 (2004).
B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schüth, N. Spielkamp, Adv. Mater. 18, 1198 (2006).
A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem., Int. Ed. 44, 3578 (2005).
M.H. Matus, K.D. Anderson, D.M. Camaioni, S.T. Autrey, D.A. Dixon, J. Phys. Chem. 111, 4411 (2007).
C.W. Yoon, L.G. Sneddon, J. Am. Chem. Soc. 128, 13992 (2006).
E. Muller, E. Sutter, P. Zahl, C.V. Ciobanu, P. Suttera, Appl. Phys. Lett. 90, 151917 (2007).
C.H. Christensen, T. Johannessen, R.Z. Sørensen, J.K. Nørskov, Catal. Today 111, 140 (2006).
P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, J. Phys. Chem. B 107, 10967 (2003).
J.F. Herbst, L.G. Hector, Jr., Phys. Rev. B 72, 125120 (2005).
J.J. Vajo, G.L. Olson, Scripta Mater. 56, 829 (2007).
T.B. Lee, D. Kim, D.H. Jung, S.B. Choi, J.H. Yoon, J. Kim, K. Choi, S.-H. Choi, Catal. Today 120, 330 (2007).
J.L.C. Rowsell, O.M. Yaghi, Angew. Chem., Int. Ed. 44, 4670 (2005).
K. Wipke, S. Sprik, H. Thomas, J. Kurtz, “Learning Demonstration Interim Progress Report—Summer 2007” (NREL Technical Report 560– 41848, 2007; www.nrel.gov/docs/fy070sti/41848.pdf) (accessed January 2008).
V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science 315, 497 (2007).
J. Greeley, M. Mavrikakis, Nat. Mater. 3, 810 (2004).
J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Songa, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, Z.-S. Liu, S. Holdcroft, J. Power Sources 160, 872 (2006).
Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Chem. Mater. 15, 4896 (2003).
J.A. Asensio, S. Borrós, P. Gómez-Romeroa, Electrochim. Acta 49, 4461 (2004).
Z. Zhou, R.N. Dominey, J.P. Rolland, B.W. Maynor, A.A. Pandya, J.M. DeSimone, J. Am. Chem. Soc. 128, 12963 (2006).
A. Lashtabeg, S.J. Skinner, J. Mater. Chem. 16, 3161 (2006).
X.C. Lu, J.H. Zhu, J. Power Sources 165, 678 (2007).
J. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J. Hiller, D. Miller, K. Thornton, P. Voorhees, S. Adler, S. Barnett, Nat. Mater. 5, 541 (2006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Crabtree, G.W., Dresselhaus, M.S. The Hydrogen Fuel Alternative. MRS Bulletin 33, 421–428 (2008). https://doi.org/10.1557/mrs2008.84
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs2008.84