[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Diamond surface conductivity: Properties, devices, and sensors

  • CVD Diamond—Research, Applications, and Challenges
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hydrogen termination of diamond lowers its ionization energy, driving electron transfer from the valence band into an adsorbed water layer or to a strong molecular acceptor. This gives rise to p-type surface conductivity with holes confined to a subsurface layer of a few nanometers thickness. The transfer doping mechanism, the electronic behavior of the resulting hole accumulation layer, and the development of robust field-effect transistor (FET) devices using this platform are reviewed. An alternative method of modulating the hole carrier density has been developed based upon an electrolyte-gate architecture. The operation of the reswulting solution-gated FET architecture in two contemporary applications will be described: the charge state control of nitrogen-vacancy centers in diamond and biosensing. Despite 25 years of work in this area, our knowledge of surface conductivity of diamond continues to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.B. Cui, J. Ristein, L. Ley, Phys. Rev. Lett. 81, 429 (1998).

    Google Scholar 

  2. M.I. Landstrass, K.V. Ravi, Appl. Phys. Lett. 55, 975 (1989).

    Google Scholar 

  3. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Phys. Rev. Lett. 85, 3472 (2000).

    Google Scholar 

  4. P. Strobel, M. Riedel, J. Ristein, L. Ley, Nature 430, 439 (2004).

    Google Scholar 

  5. P. Strobel, M. Riedel, J. Ristein, L. Ley, O. Boltalina, Diam. Relat. Mater. 14, 451 (2005).

    Google Scholar 

  6. W. Chen, D. Qi, X. Gao, A.T.S. Wee, Prog. Surf. Sci. 84, 279 (2009).

    Google Scholar 

  7. D. Langley, Y. Smets, C.B. Stark, M.T. Edmonds, A. Tadich, K.J. Rietwyk, A. Schenk, M. Wanke, Q.-H. Wu, P. Barnard, L. Ley, C.I. Pakes, Appl. Phys. Lett. 100, 032103 (2012).

    Google Scholar 

  8. S.A.O. Russell, L. Cao, D. Qi, A. Tallaire, K.G. Crawford, A.T.S. Wee, D.A. Moran, Appl. Phys. Lett. 103, 202112 (2013).

    Google Scholar 

  9. M.T. Edmonds, M. Wanke, A. Tadich, H.M. Vulling, K.J. Rietwyk, P.L. Sharp, C.B. Stark, Y. Smets, A. Schenk, Q.-H. Wu, L. Ley, C.I. Pakes, J. Chem. Phys. 136, 124701 (2012).

    Google Scholar 

  10. R. Mitsumoto, K. Seki, T. Araki, E. Ito, Y. Ouchi, Y. Achiba, K. Kikuchi, S. Yajima, S. Kawasaki, F. Okino, H. Touhara, H. Kurosaki, T. Sonoda, H. Kobayashi, J. Electron. Spectrosc. Relat. Phenom. 78, 453 (1996).

    Google Scholar 

  11. M.T. Edmonds, C.I. Pakes, S. Mammadov, W. Zhang, A. Tadich, J. Ristein, L. Ley, Appl. Phys. Lett. 98, 102101 (2011).

    Google Scholar 

  12. C.E. Nebel, C. Sauerer, F. Ertl, M. Stutzmann, C.F.O. Graeff, P. Bergonzo, O.A Williams, R. Jackman, Appl. Phys. Lett. 79, 4541 (2001).

    Google Scholar 

  13. J.A. Garrido, T. Heimbeck, M. Stutzmann, Phys. Rev. B 71, 245310 (2005).

    Google Scholar 

  14. T. Yamaguchi, E. Watanabe, H. Osato, D. Tsuya, K. Deguchi, T. Watanabe, H. Takeya, Y. Takano, S. Kurihara, H. Kawarada, J. Phys. Soc. Jpn. 82, 074718 (2013).

    Google Scholar 

  15. B. Rezek, H. Watanbe, C.E. Nebel, Appl. Phys. Lett. 88, 042110 (2006).

    Google Scholar 

  16. M. Dankerl, M.V. Hauf, M. Stutzmann, J.A. Garrido, Phys. Status Solidi A 209, 1631 (2012).

    Google Scholar 

  17. D. Alfonso, D.A. Drabold, S.E. Ulloa, Phys. Rev. B 51, 14669 (1995).

    Google Scholar 

  18. L. Gan, E. Baskin, C. Saguy, R. Kalish, Phys. Rev. Lett. 96, 196808 (2006).

    Google Scholar 

  19. A. Bolker, C. Saguy, M. Tordjman, L. Gan, R. Kalish, Phys. Rev. B 83, 155434 (2011).

    Google Scholar 

  20. C.E. Nebel, B. Rezek, A. Zrenner, Phys. Status Solidi A 201, 2432 (2004).

    Google Scholar 

  21. M.T. Edmonds, C.I. Pakes, L. Ley, Phys. Rev. B 81, 085314 (2010).

    Google Scholar 

  22. H. Kawarada, M. Aoki, I. Itoh, Appl. Phys. Lett. 65, 1563 (1994).

    Google Scholar 

  23. H. Itoh, H. Kawarada, Jpn. J. Appl. Phys. 34, 4677 (1995).

    Google Scholar 

  24. H. Kawarada, Surf. Sci. Rep. 26, 205 (1996).

    Google Scholar 

  25. P. Gluche, A. Aleksov, A. Vescan, W. Ebert, E. Kohn, IEEE Electron Device Lett. 18, 547 (1997).

    Google Scholar 

  26. K. Tsugawa, H. Noda, K. Hirose, H. Kawarada, Phys. Rev. B 81, 045303 (2010).

    Google Scholar 

  27. H. Taniuchi, H. Umezawa, T. Arima, M. Tachiki, H. Kawarada, IEEE Electron Device Lett. 22, 390 (2001).

    Google Scholar 

  28. A. Aleksov, A. Denisenko, U. Spitzberg, T. Jenkins, W. Ebert, E. Kohn, Diam. Relat. Mater. 11, 382 (2002).

    Google Scholar 

  29. K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, S.E. Coe, IEEE Electron Device Lett. 27, 570 (2006).

    Google Scholar 

  30. S.A.O. Russel, S. Sharabi, A. Tallaire, D.A.J. Moran, IEEE Electron Device Lett. 33, 570 (2012).

    Google Scholar 

  31. H. Matsudaira, S. Miyamoto, H. Ishizaka, H. Umezawa, H. Kawarada, IEEE Electron Device Lett. 25, 480 (2004).

    Google Scholar 

  32. K. Hirama, H. Takayanagi, S. Yamauchi, Y. Jingu, H. Umezaw, H. Kawarada, IEEE IEDM (2007), p. 873.

    Google Scholar 

  33. H. Kawarada, Jpn. J. Appl. Phys. 51, 090111 (2012).

    Google Scholar 

  34. K. Hirama, M. Kasu, Jpn. J. Appl. Phys. 51, 090112 (2012).

    Google Scholar 

  35. D. Kueck, A. Schmidt, A. Denisenko, E. Kohn, Diam. Relat. Mater. 19, 166 (2010).

    Google Scholar 

  36. A. Hiraiwa, A. Daicho, S. Kurihara, Y. Yokoyama, H. Kawarada, J. Appl. Phys. 112, 124504 (2012).

    Google Scholar 

  37. H. Kawarada, Y. Araki, T. Sakai, T. Ogawa, H. Umezawa, Phys. Status Solidi A 185, 79 (2001).

    Google Scholar 

  38. J.A. Garrido, A. Hartl, M. Dankerl, A. Reitinger, M. Eickhoff, A. Helwig, G. Muller, M. Stutzmann, J. Am. Chem. Soc. 130, 4177 (2008).

    Google Scholar 

  39. J.A. Garrido, S. Nowy, A. Hartl, M. Stutzmann, Langmuir 24, 3897 (2008).

    Google Scholar 

  40. M. Dankerl, A. Lippert, S. Birner, E.U. Stuetzel, M. Stutzmann, J.A. Garrido, Phys. Rev. Lett. 106, 196103 (2011).

    Google Scholar 

  41. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009).

    Google Scholar 

  42. V. Acosta, P. Hemmer, MRS Bull. 38 (2) (2013).

    Google Scholar 

  43. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455, 644 (2008).

    Google Scholar 

  44. B. Grotz, M.V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Nat. Commun. 3, 729 (2012).

    Google Scholar 

  45. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Phys. Rev. B 83, 081304 (2011).

    Google Scholar 

  46. K.-S. Song, G.-J. Zhang, Y. Nakamura, K. Furukawa, T. Hiraki, J.-H. Yang, T. Funatsu, I. Ohdomari, H. Kawarada, Phys. Rev. E 74, 041919 (2006).

    Google Scholar 

  47. M.V. Hauf, L.H. Hess, J. Howgate, M. Dankerl, M. Stutzmann, J.A. Garrido, Appl. Phys. Lett. 97, 093504 (2010).

    Google Scholar 

  48. J.A. Garrido, in CVD Diamond for Electronic Devices and Sensors, R.S. Sussmann, Ed. (Wiley, Chichester UK, 2009).

    Google Scholar 

  49. J.A. Garrido, A. Hardl, S. Kuch, M. Stutzmann, O. Williams, R. Jackmann, Appl. Phys. Lett. 86, 073504 (2005).

    Google Scholar 

  50. M. Dankerl, A. Reitinger, M. Stutzmann, J.A. Garrido, Phys. Status Solidi RRL 2, 31 (2008).

    Google Scholar 

  51. A. Hartl, J.A. Garrido, S. Nowy, R. Zimmermann, C. Werner, D. Horinek, R. Netz, M. Stutzmann, J. Am. Chem. Soc. 129, 1287 (2007).

    Google Scholar 

  52. A. Hartl, B. Baur, M. Stutzmann, J.A. Garrido, Langmuir 24, 9898 (2008).

    Google Scholar 

  53. S. Kuga, J.H. Yang, H. Takahashi, K. Hirama, T. Iwasaki, H. Kawarada, J. Am. Chem. Soc. 130, 13251 (2008).

    Google Scholar 

  54. H. Kawarada, A.R. Ruslinda, Phys. Status Solidi A 208, 2005 (2011).

    Google Scholar 

  55. M. Dankerl, S. Eick, B. Hofmann, M. Hauf, S. Ingebrandt, A. Offenhäusser, M. Stutzmann, J.A. Garrido, Adv. Funct. Mater. 19, 2915 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher I. Pakes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakes, C.I., Garrido, J.A. & Kawarada, H. Diamond surface conductivity: Properties, devices, and sensors. MRS Bulletin 39, 542–548 (2014). https://doi.org/10.1557/mrs.2014.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.95

Navigation