[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Flexible and stretchable inorganic solar cells: Progress, challenges, and opportunities

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

This review focuses on state-of-the-art research and development in the areas of flexible and stretchable inorganic solar cells, explains the principles behind the main technologies, highlights their key applications, and discusses future challenges.

Flexible and stretchable solar cells have gained a growing attention in the last decade due to their ever-expanding range of applications from foldable electronics and robotics to wearables, transportation, and buildings. In this review, we discuss the different absorber and substrate materials in addition to the techniques that have been developed to achieve conformal and elastic inorganic solar cells which show improved efficiencies and enhanced reliabilities compared with their organic counterparts. The reviewed absorber materials range from thin films, including a-Si, copper indium gallium selenide, cadmium telluride, SiGe/III–V, and inorganic perovskite to low-dimensional and bulk materials. The development techniques are generally based on either the transfer-printing of thin cells onto various flexible substrates (e.g., metal foils, polymers, and thin glass) with or without shape engineering, the direct deposition of thin films on flexible substrates, or the etch-based corrugation technique applied on originally rigid cells. The advantages and disadvantages of each of these approaches are analyzed in terms of achieved efficiency, thermal and mechanical reliability, flexibility/stretchability, and economical sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1.
Table 1.
Figure 2.
Figure 3.
Figure 4.
Table 2.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Ruan K., Ding K., and Wang Y.: Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 27, 14370–14377 (2015).

    Google Scholar 

  2. Archer M.D. and Green M.A.: Clean Electricity From Photovoltaics, 2nd ed. (Imperial College Press, World Scientific Publishing Co., 2014), London, UK.

    Google Scholar 

  3. Hwang T.H.: Flexible solar cell. U.S. Patent Application 13/567, 2012, 314.

    Google Scholar 

  4. Chen Z.: Large Area and Flexible Electronics (Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, 2015).

    Google Scholar 

  5. Carlson D.E. and Wronski C.R.: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

    CAS  Google Scholar 

  6. Fu X., Xu L., Li J., Sun X., and Peng H.: Flexible solar cells based on carbon nanomaterials. Carbon 139, 1063–1073 (2018).

    CAS  Google Scholar 

  7. Zhang X., Öberg V.A., Du J., Johansson E., and Johansson M.: Extremely lightweight and ultra-flexible infrared light-converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire-based electrode. R. Soc. Chem. 11, 354–364 (2018).

    CAS  Google Scholar 

  8. Cao B., Yang L., Jiang S., Lin H., and Li X.: Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A 7, 4960–4970 (2019).

    CAS  Google Scholar 

  9. Ito M., Kato K., Komoto K., Kichimi T., and Kurokawa K.: A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules. Prog. Photovolt. Res. Appl. 16, 17–30 (2020).

    Google Scholar 

  10. Wipliez L., Löffler J., Heijna M.C.R., Slooff-Hoek L.H., de Keijzer M.A., Bosman J., Soppe W.J., Schoonderbeek A., Stute U., Rubingh J.E.J.M., Furthner F., and Kruijt P.G.M.: Monolithic series interconnection of flexible thin-film PV devices. In 26th European Photovoltaic Solar Energy Conference and Exhibition, September 5–9 (Hamburg, Germany, 2011); p. 2641.

  11. Smeets M., Wilken K., Bittkau K., Aguas H., Pereira L., Fortunato E., Martins R., and Smirnov V.: Flexible thin film solar cells on cellulose substrates with improved light management. Phys. Status Solidi A 214, 1700070 (2017).

    Google Scholar 

  12. Jeyakumar R., Verma A., Díaz B.G., Guerrero-Lemus R., Cañizo C.D., Tabarés E.G., Rey-Stolle I., Grane F., Korte L., Tucci M., Rath J., Singh U.P., Todorov T., Gunawan K., Rubio S., Plaza J.L., Diéguez E., Hoffmann B., Christiansenm S., and Cirlinopq G.E.: Inorganic photovoltaics-planar and nanostructured devices. Prog. Mater. Sci. 82, 294–404 (2016).

    Google Scholar 

  13. Morrison N.A., Morrison N., Stolley T., Hermanns U., Reus A., Deppisch T., Bolandi H., Melnik Y., Singh V., and Griffith Cruz J.: An overview of process and product requirements for next generation thin film electronics, advanced touch panel devices, and ultra high barriers. Proc. IEEE 103, 518 (2015).

    CAS  Google Scholar 

  14. Soppe W., Dörenkämper M., Notta J.-B., Pex P., Schipper W., and Wilde R.: Nanoimprint lithography of textures for light trapping in thin film silicon solar cells. Phys. Status Solidi A 210, 707–710 (2013).

    CAS  Google Scholar 

  15. Lin Y., Xu Z., Yu D., Lu L., Min Yin M., Tavakoli M.M., Chen X., Yuying Hao Y., Fan Z., Cui Y., and Li D.: Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency. ACS Appl. Mater. Interfaces 8, 10929–10936 (2016).

    CAS  Google Scholar 

  16. Tsao Y.-C., Søndergaard T., Kristensen P.K., Rizzoli R., Pedersen K., and Pedersen T.G.: Rapid fabrication and trimming of nanostructured backside reflectors for enhanced optical absorption in a-Si:H solar cells. Appl. Phys. A 120, 417–425 (2015).

    CAS  Google Scholar 

  17. Xiao H., Wang J., Huang H., Lu L., Lin Q., Fan Z., Chenb X., Jeongd C., Zhua X., and Li D.: Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy 11, 78–87 (2015).

    CAS  Google Scholar 

  18. Dong W., Song Y., Yoon H., Jung G., Kim K., Kim S., and Lee J.L.: Monolithic photoassisted water splitting device using anodized Ni-Fe oxygen evolution catalytic substrate. Adv. Energy Mater. 7, 1700659 (2017).

    Google Scholar 

  19. Zhang C., Song Y., Wang M., Yin M., Zhu X., Tian L., Wang H., Chen X., Fan Z., Lu L., and Li D.: Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using Sol-gel based nanoimprinting method. Adv. Funct. Mater. 27, 1604720 (2017).

    Google Scholar 

  20. Balagi P., Dauksher W.J., Bowden S.G., and Augusto A.: Development of 40 μm thin flexible silicon heterojunction solar cells. In IEEE Proceedings of PVSC (HI, USA, 2018).

  21. Wang G., Shi C., Zhao L., Diao H., and Wang W.: Fabrication of flexible silicon thin film solar modules by substrate transfer technology. Vacuum 102, 72–74 (2014).

    CAS  Google Scholar 

  22. Yang X., Sheng J., Wu S., Chen D., Zhou J., Zhou S., He J., Gao P., and Ye J.: Colloidal transfer printing method for periodically textured thin films in flexible media with greatly enhanced solar energy harvesting. Mater. Res. Express 2, 106402 (2015).

    Google Scholar 

  23. Lee C.H., Kim D.R., and Zheng X.: Transfer printing methods for flexible thin film solar cells: Basic concepts and working principles. ACS Nano 8, 8746 (2014).

    CAS  Google Scholar 

  24. Wilken K., Finger F., and Smirnov V.: Influence of ZnSnOx barrier layer on the texturing of ZnO: Al layers for light management in flexible thin-film silicon solar cells. Phys. Status Solidi A 214, 1600884 (2017).

    Google Scholar 

  25. Jeong J., Kim Y., Park C., Kim H., and Choi J.: Effect of H/Ar treatment on ZnO: B transparent conducting oxide for flexible a-Si:H/μc-Si: H photovoltaic modules under damp heat stress. Microelectron. Reliab. 64, 640 (2016).

    CAS  Google Scholar 

  26. Águas H., Mateus T., Vicente A., Gaspar D., Mendes M., Schmidt W., Pereira L., Fortunato E., and Martins R.: Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592 (2015).

    Google Scholar 

  27. Myong S.Y., Jeon L.S., and Kwon S.W.: Superstrate type flexible thin-film Si solar cells using flexible glass substrates. Thin Solid Films 550, 705 (2014).

    CAS  Google Scholar 

  28. Sevilla G., Ghoneim M., Fahad H., Rojas J., Hussain A., and Hussain M.: Flexible nanoscale high-performance FinFETs. ACS Nano 8, 9850–9856 (2014).

    Google Scholar 

  29. Sevilla G., Rojas J., Fahad H., Hussain A., Ghanem R., Smith C., and Hussain M.: Flexible and transparent silicon-on-polymer based Sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation. Adv. Mater. 26, 2794–2799 (2014).

    CAS  Google Scholar 

  30. Rojas J., Torres Sevilla G., and Hussain M.: Can we build a truly high performance computer which is flexible and transparent? Sci. Rep. 3 (2013). doi:10.1038/srep02609.

  31. Roy A., Das S., Kundu A., Banerjee C., and Mukherjee N.: c-Si/n-ZnO-based flexible solar cells with silica nanoparticles as a light trapping metamaterial. Phys. Chem. Chem. Phys. 19, 12838–12844 (2017).

    CAS  Google Scholar 

  32. Jeyakumar R., Ramamurthy S., Jayachandran M., and Chockalingam M.J.: Electrochemical preparation and characterization of copper indium diselenide thin films. Mater. Res. Bull. 29, 195–202 (1994).

    CAS  Google Scholar 

  33. Hahn H., Frank G., Klingler W., Meyer A.D., and Storger G.Z.: Studies on ternary chalcogenides. Anorg. Allg. Chem. 271, 153–170 (1953).

    CAS  Google Scholar 

  34. Wagner S., Shay J.L., Migliorato P., and Kasper H.M.: CuInSe2/CdS heterojunction photovoltaic detectors. Appl. Phys. Lett. 25, 434–436 (1974).

    CAS  Google Scholar 

  35. Kazmerski L.L., White F.R., and Morgan G.K.: Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29, 268–269 (1976).

    CAS  Google Scholar 

  36. Devaney W.E., Michelsen R.A., and Chen W.S.: Development of CIS cells for space applications. In Proc. 18th IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1985); p. 1733.

  37. Kazmerski L.L. and Sanborn G.A.: CuInS2 thin-film homojunction solar cells. J. Appl. Phys. 48, 3178–3180 (1977).

    CAS  Google Scholar 

  38. Mickelsen R.A. and Chen W.S.: Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell. In 15th IEEE Photovoltaic Specialists Conference Proc. 15 (Orlando, FL, USA, 1981); pp. 800–804.

  39. Kamada R., Yagioka T., Adachi S., Handa A., Tai K.F., Kato F., and Sugimoto H.: New world record Cu(In, Ga)(Se, S)2thin film solar cell efficiency beyond 22%. In Proc. IEEE 43rd Photovoltaic Specialists Conference (Portland, OR, 2016); pp. 1287–1291.

  40. Yadav A., Singh G., Nekovei R., and Jeyakumar R.: c-Si solar cells formed from spin-on phosphoric acid and boric acid. Renew. Energy 80, 80–84 (2015).

    CAS  Google Scholar 

  41. Singh G., Verma A., and Jeyakumar R.: Fabrication of c-Si solar cells using boric acid as spin-on dopant for back surface field. RSC Adv. 4, 4225–4229 (2014).

    CAS  Google Scholar 

  42. New concepts for high efficiency and low cost in-line manufactured flexible CIGS solar cells: http://cordis.europa.eu/result/rcn/143531_en.html (accessed April 2020).

  43. Kapur V.K., Bansal A., Le P., and Asensio O.I.: Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films 431, 53–57 (2003).

    Google Scholar 

  44. Hanket G.M., Singh U.P., Eser E., Shafarman W.N., and Birkmire R.W.: Pilot-scale manufacture of Cu (InGa) Se/sub 2/films on a flexible polymer substrate. In Proc. 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, 2002); pp. 567–570.

  45. Kapur V.K., Bansal A., Le P., Asensio O., and Shigeoka N.: Non-vacuum processing of CIGS solar cells on flexible polymeric substrates. In Proc. 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003); pp. 465–468.

  46. Wiedeman S., Beck M.E., Butcher R., Repins I., Gomez N., Joshi B., Wendt R.G., and Britt J.S.: CIGS module development on flexible substrates. In Proc. 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, 2002); pp. 575–578.

  47. Hashimoto Y., Satoh T., Shimakawa S., and Negami T.: High efficiency CIGS solar cell on flexible stainless steel. In Proc. 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, 2003); pp. 574–577.

  48. Kaufmann C.A., Neisser A., Klenk R., and Scheer R.: Transfer of Cu (In, Ga) Se2 thin film solar cells to flexible substrates using an in situ process control. Thin Solid Films 480, 515–519 (2005).

    Google Scholar 

  49. Bremaud D., Rudmann D., Kaelin M., Ernits K., Bilger G., Dobeli M., Zogg H., and Tiwari A.N.: Flexible Cu (In, Ga) Se2 on Al foils and the effects of Al during chemical bath deposition. Thin Solid Films 515, 5857–5861 (2007).

    CAS  Google Scholar 

  50. Ishizuka S., Yamada A., Matsubara K., Fons P., Sakurai K., and Niki S.: Development of high-efficiency flexible Cu (In, Ga) Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Curr. Appl. Phys. 10, S154–S156 (2010).

    Google Scholar 

  51. Chirilă A., Buecheler S., Pianezzi F., Bloesch P., Gretener C., Uhl A., Fella C., Kranz L., Perrenoud J., Seyrling S., Verma R., Nishiwaki S., Romanyuk Y., Bilger G., and Tiwari A.: Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011).

    Google Scholar 

  52. Kapur V.K., Bansal A., Muntasser Z., Haber J., Trivedi A., Guevarra D., and Draganova D.: ‘Ink-based’ CIGS solar cells on lightweight Titanium foil. In 34th IEEE Photovoltaic Specialists Conference Proc. (Philadelphia, USA, 2009); pp. 1396–1398.

  53. Kessler F. and Rudmann D.: Technological aspects of flexible CIGS solar cells and modules. Solar Energy 77, 685–695 (2004).

    CAS  Google Scholar 

  54. Wuerz R., Eicke A., Frankenfeld M., Kessler F., Powalla M., Rogin P., and Yazdani-Assl O.: CIGS thin-film solar cells on steel substrates. Thin Solid Films 517, 2415–2418 (2009).

    CAS  Google Scholar 

  55. Caballero R., Kaufmann C., Eisenbarth T., Unold T., Schorr S., Hesse R., Klenk R., and Schock H.: The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates. Phys. Status Solidi (a) 206, 1049–1053 (2009).

    CAS  Google Scholar 

  56. Rechid J., Thyen R., Raitzig A., Wulff S., Mihhailova M., Kalberlah K., and Kampmann A.: 9% efficiency: CIGS on Cu substrate. In 3rd World Conf. Photovoltaic Energy Conversion (Osaka, Japan, 2003); pp. 559–561.

  57. Kessler F., Herz K., Powalla M., Hartmann M., Schmidt M., Jasenek A., and Schock H.W.: Flexible and monolithically integrated CIGS-Modules. Mater. Res. Soc. Symp. Proc. 668, H3.6.1–H3.6.6 (2001).

    Google Scholar 

  58. Salomé P., Fjällström V., Szaniawski P., Leitão J., Hultqvist A., Fernandes P., Teixeira J., Falcão B., Zimmermann U., da Cunha A., and Edoff M.: A comparison between thin film solar cells made from co-evaporated CuIn1-xGaxSe2using a one-stage process versus a three-stage process. Prog. Photovolt. Res. Appl. 23, 470–478 (2014).

    Google Scholar 

  59. Hamada N., Nishimura T., Chantana J., Kawano Y., Masuda T., and Minemoto T.: Fabrication of flexible and bifacial Cu(In,Ga)Se2 solar cell with superstrate-type structure using a lift-off process. Solar Energy 199, 819–825 (2020).

    CAS  Google Scholar 

  60. Penndorf J., Winkler M., Tober O., Röser D., and Jacobs K.: CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications. Solar Energy Mater. Solar Cells 53, 285–298 (1998).

    CAS  Google Scholar 

  61. Sim J., Kang S., Nandi R., Jo J., Jeong K., and Lee C.: Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Solar Energy 162, 357–363 (2018).

    CAS  Google Scholar 

  62. Ishizuka S., Yamada A., Matsubara K., Fons P., Sakurai K., and Niki S.: Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Curr. Appl. Phys. 10, S154–S156 (2010).

    Google Scholar 

  63. Caballero R., Kaufmann C., Eisenbarth T., Unold T., Klenk R., and Schock H.: High efficiency low temperature grown Cu(In,Ga)Se2 thin film solar cells on flexible substrates using NaF precursor layers. Prog. Photovolt. Res. Appl. 19, 547–551 (2011).

    CAS  Google Scholar 

  64. Margolis R., Feldman D., and Boff D.: Q1/Q2 2017Solar Industry Update, NREL Report, 2017. http://www.nrel.gov/docs/fy18osti/70406.pdf. Accessed May 2020.

    Google Scholar 

  65. Feurer T., Reinhard P., Avancini E., Bissig B., Löckinger J., Fuchs P., Carron R., Weiss T., Perrenoud J., Stutterheim S., Buecheler S., and Tiwari A.: Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications. Prog. Photovolt. Res. Appl. 25, 645–667 (2016).

    Google Scholar 

  66. Reinhard P., Chirila A., Blosch P., Pianezzi F., Nishiwaki S., Buecheler S., and Tiwari A.: Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE J. Photovoltaics 3, 572–580 (2013).

    Google Scholar 

  67. Farshchi R., Hickey B., and Poplavskyy D.: Light-soak and dark-heat induced changes in Cu(In, Ga)Se2 solar cells: A macroscopic to microscopic study. In Proc 44th IEEE PVSC (Washington, DC, 2017); pp. 1–4.

    Google Scholar 

  68. Kaczynski R., Lee J.W., Alsburg J.V., Sang B.S., Schoop U., and Britt J.: In-line potassium fluoride treatment of CIGS absorbers deposited on flexible substrates in a production-scale process tool. In Proc. 44th IEEE PVSC (2017).

  69. Zhao Y., Boccard M., Liu S., Becker J., Zhao X.-H., Campbell C.M., Suarez E., Lassise M.B., Holman Z., and Zhang Y.-H.: Monocrystalline CdTe solar cells with opencircuit voltage over 1 V and efficiency of 17%. Nat. Energy 1, 16067 (2016).

    CAS  Google Scholar 

  70. Zanio K.: Cadmium Telluride in Semiconductors and Semimetals (Academic Press, Cambridge, Massachusetts, USA, 1978).

    Google Scholar 

  71. Sites J. and Pan J.: Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515, 6099–6102 (2007).

    CAS  Google Scholar 

  72. Sites J., Munshi A., Kephart J., Swanson D., and Sampath W.S.: Progress and challenges with CdTe cell efficiency. In 43rd IEEE Photovolt. Spec. Conf. (Portland, OR, USA, 2016); pp. 3632–3635.

    Google Scholar 

  73. Fthenakis V.: Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sustain. Energy Rev. 13, 2746–2750 (2009).

    CAS  Google Scholar 

  74. Paudel N.R., Compaan A.D., and Yan Y.: Ultrathin CdTe solar cells with MoO3−x/Au back contacts. J. Electron. Mater. 43, 2783–2787 (2014).

    CAS  Google Scholar 

  75. Salavei A., Rimmaudo I., Xu B.L., Barbato M., Meneghini M., Meneghesso G., Di Mare S., and Romeo A.: High efficiency ultra-thin CdTe absorbers by physical vapor deposition. In 29th Eur. Photovoltaic Solar Energy Conf. Exhibit. (Amsterdam, The Netherlands, 2014); pp. 1430–1432.

  76. Krishnakumar V., Barati A., Schimper H.J., Klein A., and Jaegermann W.: A possible way to reduce absorber layer thickness in thin film CdTe solar cells. Thin Solid Films 535, 233–236 (2013).

    CAS  Google Scholar 

  77. Paudel N.R., Wieland K.A., Young M., Asher S., and Compaan A.D.: Stability of submicron-thick CdTe solar cells. Prog. Photovolt. Res. Appl. 22, 107–114 (2014).

    CAS  Google Scholar 

  78. Kranz L., Gretener C., Perrenoud J., Schmitt R., Pianezzi F., La Mattina F., Blösch P., Cheah E., Chirilă A., Fella C.M., Hagendorfer H., Jäger T., Nishiwaki S., Uhl A.R., Buecheler S., and Tiwari A.N.: Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4 (2013).

  79. Wen X., Lu Z., Sun X., Xiang Y., Chen Z., Shi J., Bhat I., Wang G., Washington M., and Lu T.: Epitaxial CdTe thin films on mica by vapor transport deposition for flexible solar cells. ACS Appl. Energy Mater. 3, 4589–4599 (2020).

    CAS  Google Scholar 

  80. Salavei A., Menossi D., Piccinelli F., Kumar A., Mariotto G., Barbato M., Meneghini M., Meneghesso G., Di Mare S., Artegiani E., and Romeo A.: Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Solar Energy 139, 13–18 (2016).

    CAS  Google Scholar 

  81. Tiwari A.N., Romeo A., Baetzner D., and Zogg H.: Flexible CdTe solar cells on polymer films. Prog. Photovoltaics Res. Appl. 9, 211–215 (2001).

    CAS  Google Scholar 

  82. Romeo A., Khrypunov G., Kurdesau F., Arnold M., Bätzner D.L., Zogg H., and Tiwari A.N.: High-efficiency flexible CdTe solar cells on polymer substrates. Sol. Energy Mater. Sol. Cells 90, 3407–3415 (2006).

    CAS  Google Scholar 

  83. Perrenoud J., Schaffner B., Buecheler S., and Tiwari A.N.: Fabrication of flexible CdTe solar modules with monolithic cell interconnection. Sol. Energy Mater. Sol. Cells 95, S8–S12 (2011).

    CAS  Google Scholar 

  84. Rance W.L., Burst J.M., Meysing D.M., Wolden C.A., Reese M.O., Gessert T.A., Metzger W.K., Garner S., Cimo P., and Barnes T.M.: 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 104, 14 (2014).

    Google Scholar 

  85. Mahabaduge H.P., Rance W.L., Burst J.M., Reese M.O., Meysing D.M., Wolden C.A., Li J., Beach J.D., Gessert T.A., Metzger W.K., Garner S., and Barnes T.M.: Highefficiency, flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 106, 133501 (2015).

    Google Scholar 

  86. Salavei A., Menossi D., Piccinelli F., Kumar A., Mariotto G., Barbato M., Meneghini M., Meneghesso G., Di Mare S., and Artegiani E.: Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Sol. Energy 139, 13–18 (2016).

    CAS  Google Scholar 

  87. Gessert T.A., Romero M.J., Dhere R.G., and Asher S.E.: Analysis of the ZnTe: Cu contact on CdS/CdTe solar cells. MRS Online Proc. 763, B.3.4.1–B.3.4.6 (2003).

    Google Scholar 

  88. Romeo N., Bosio A., Mazzamuto S., Romeo A., and Vaillant Roca L.: High efficiency CdTe/CdS thin film solar cells with a novel back contact. In Proc. 22nd EU PVSEC. (Milano, Italy, 2007); pp. 1919–1921.

  89. Artegiani E., Menossi D., Shiel H., Dhanak V., Major J., Gasparotto A., Sun K., and Romeo A.: Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells. Prog. Photovolt. Res. Appl. 27, 706 (2019).

    CAS  Google Scholar 

  90. Rance W., Burst J., Meysing D., Wolden C., Reese M., Gessert T., Metzger W., Garner S., Cimo P., and Barnes T.: 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 104, 143903 (2014).

    Google Scholar 

  91. Kim S., Hwang T., Namgoong J., Kim H., and Kim J.: Effect of linker moiety on linear dimeric benzotriazole derivatives as highly stable UV absorber for transparent polyimide film. Dyes Pigm. 180, 108469 (2020).

    CAS  Google Scholar 

  92. Green M., Hishikawa Y., Dunlop E., Levi D., Hohl-Ebinger J., and Ho-Baillie A.: Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2017).

    Google Scholar 

  93. Campesato R.M., Gabetta G., Lisbona E.F., and D'Abrigeon L.: Thin and flexible triple junction cells 30% efficient: Qualification results and future space applications. In 44th IEEE Photovoltaic Specialists Conference (Washington, DC, 2017).

  94. Yablonovitch E., Gmitter T., Harbison J.P., and Bhat R.: Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222 (1988).

    Google Scholar 

  95. Konagai M., Sugimoto M., and Takahashi K.: High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277–280 (1978).

    CAS  Google Scholar 

  96. Wu F.L., Ou S.L., Horng R.H., and Kao Y.C.: Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).

    Google Scholar 

  97. Moon S., Kim K., Kim Y., Heo J., and Lee J.: Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 6, 30107 (2016).

    CAS  Google Scholar 

  98. Yoon J., Jo S., Chun I.S., Jung I., Kim H.S., Meitl M., Menard E., Li X., Coleman J.J., Paik U., and Rogers J.A.: GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    CAS  Google Scholar 

  99. Kayes B.M., Nie H., Twist R., Spruytte S.G., Reinhardt F., Kizilyalli I.C., and Higashi G.S.: 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proc. 37th IEEE Photovoltaic Specialists Conference (Washington, DC, USA, 2011); pp. 4–8.

  100. Cariou R., Benick J., Feldmann F., Höhn O., Hauser H., Beutel P., Razek N., Wimplinger M., Bläsi B., Lackner D., Hermle M., Siefer G., Glunz S., Bett A., and Dimroth F.: III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 3, 529–529 (2018).

    Google Scholar 

  101. Fu R., Feldman D., Margolis R., Woodhouse M., and Ardani K.: U.S. solar photovoltaic system cost benchmark, National Renewable Energy Laboratory, Golden, CO, USA, TP-6A20-68925, 2017.

    Google Scholar 

  102. Woodhouse M. and Goodrich A.: A manufacturing cost analysis relevant to single- and dual-junction photovoltaic cells fabricated with III–Vs and III–Vs grown on Czochralski silicon, National Renewable Energy Laboratory, Golden, CO, USA, PR-6A20-60126, 2013.

    Google Scholar 

  103. Jain N. and Hudait M.K.: III–V multijunction solar cell integration with silicon: Present status, challenges and future outlook. Energy Harvest. Syst. 1, 121–145 (2014).

    Google Scholar 

  104. Essig S., Allebe C., Remo T., Geisz J.F., Steiner M.A., Horowitz K., Barraud L., Ward J.S., Schnabel M., Descoeudres A., Young D.L., Woodhouse M., Despeisse M., Ballif C., and Tamboli A.: Raising the one-sun conversion efficiency of IIIV/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    CAS  Google Scholar 

  105. Cariou R., Benick J., Beutel P., Razek N., Flotgen N., Hermle M., Lackner D., Glunz S.W., Bett A.W., Wimplinger M., and Dimroth F.: Monolithic two-terminal III–V/Si triple junction solar cells with 30.2% efficiency under 1-Sun AM1.5G. IEEE J. Photovolt. 7, 367–373 (2017).

    Google Scholar 

  106. Andre C.L., Carlin J.A., Boeckl J.J., Wilt D.M., Smith M.A., Pitera A.J., Lee M.L., Fitzgerald E.A., and Ringel S.A.: Investigations of high-performance GaAs solar cells grown on Ge–Si/sub 1-x/Ge/sub x/-Si substrates. IEEE Trans. Electr. Dev. 52, 1055–1060 (2005).

    CAS  Google Scholar 

  107. Yaung K.N., Vaisman M., Lang J., and Lee M.L.: GaAsP solar cells on GaP/Si with low threading dislocation density. Appl. Phys. Lett. 109, 032107 (2016).

    Google Scholar 

  108. Ringel S.A., Carlin J.A., Andre C.L., Hudait M.K., Gonzalez M., Wilt D.M., Clark E.B., Jenkins P., Scheiman D., Allerman A., Fitzgerald E.A., and Leitz C.W.: Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Prog. Photovolt. 10, 417 (2002).

    CAS  Google Scholar 

  109. Wang Y., Ren Z., Thway M., Lee K., Yoon S.F., Peters I.M., Buonassisi T., Fizgerald E.A., Tan C.S., and Lee K.H.: Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer. Sol. Energy Mater. Sol. Cells 172, 140 (2017).

    CAS  Google Scholar 

  110. McClelland R.W., Bozler C.O., and Fan J.C.C.: A technique for producing epitaxial films on reuseable substrates. Appl. Phys. Lett. 37, 560–562 (1980).

    CAS  Google Scholar 

  111. Vaisman M., Jain N., Li Q., Lau M., Tamboli A.C., and Warren E.L.: GaAs solar cells on V-grooved silicon via selective area growth. In Proc. 44th IEEE Photovoltaic Specialists Conference (Washington, DC, USA, 2017).

  112. Warren E.L., Makoutz E.A., Horowitz K.A., Dameron A., Norman A.G., Stradins P., Zimmerman G.D., and Tamboli A.C.: Selective area growth of GaAs on Si patterned using nanoimprint lithography. In Proc. 43rd IEEE Photovoltaic Specialists Conference (Portland, OR, USA, 2016); pp. 1938–1941.

  113. Vaisman M., Jain N., Li Q., Lau K.M., Makoutz E., Saenz T., McMahon W.E., Tamboli A.C., and Warren E.L.: GaAs solar cells on nanopatterned Si substrates. IEEE J. Photovolt. 3, 1635–1640 (2018).

    Google Scholar 

  114. Venkatasubramanian R., O'Quinn B.C., Hills J.S., Sharps P.R., Timmons M.L., Hutchby J.A., Field H., Ahrenkiel A., and Keyes B.: 18.2% (AM1.5) efficient GaAs solar cell on optical grade polycrystalline Ge substrate. In 25th IEEE Photovoltaic Specialists Conference (Washington, USA, 1997); pp. 31–36.

  115. Venkatasubramanian R., O'Quinn B.C., Siivola E., Keyes B., and Ahrenkiel R.: 20% (AM1.5) efficiency GaAs solar cells on sub-mm grainsize poly-Ge and its transition to low cost substrates. In Proc. IEEE Photovoltaic Specialists Conference (1997); p. 811.

  116. Wilt D.M., Smith M.A., Maurer W., Scheiman D., and Jenkins P.P.: GaAs photovoltaics on polycrystalline Ge substrates. In IEEE 4th World Conf. Photovoltaic Energy Conference (Waikoloa, HI, USA, 2006); p. 1891.

  117. Polly S.J., Plourde C.R., Bailey C.G., Leitz C., Vineis C., Brindak M.P., Forbes D.V., McNatt J.S., Hubbard S.M., and Raffaelle R.P.: Thin film III–V solar cells on Mo foil. In 34th IEEE Photovoltaic Specialists Conference (Philadelphia, PA, USA, 2009); pp. 1377–1380.

  118. Kurtz S.R. and McConnell R.: Requirements for a 20% efficient polycrystalline GaAs solar cell. In AIP Conf. Proc. 404 (Denver, CO, USA, 1997); pp. 191–205.

  119. Teplin C.W., Ginley D.S., and Branz H.M.: A new approach to thin film crystal silicon on glass: Biaxially-textured silicon on foreign template layers. J. Non-Cryst. Solids 352, 984–988 (2006).

    CAS  Google Scholar 

  120. Dutta P., Rathi M., Khatiwada D., Sun S., Yao Y., Yu B., Reed S., Kacharia M., Martinez J., Litvinchuk A., Pasala Z., Pouladi S., Eslami B., Ryou J., Ghasemi H., Ahrenkiel P., Hubbard S., and Selvamanickam V.: Flexible GaAs solar cells on roll-to-roll processed epitaxial Ge films on metal foils: A route towards low-cost and high-performance III–V photovoltaics. Energy Environ. Sci. 12, 756–766 (2019).

    CAS  Google Scholar 

  121. Pouladi S., Rathi M., Khatiwada D., Asadirad M., Oh S., Dutta P., Yao Y., Gao Y., Sun S., Li Y., Shervin S., Lee K., Selvamanickam V., and Ryou J.: High-efficiency flexible III-V photovoltaic solar cells based on single-crystal-like thin films directly grown on metallic tapes. Prog. Photovolt. Res. Appl. 27, 30–36 (2018).

    Google Scholar 

  122. Kojima A., Teshima K., and Shirai Y.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  123. Zhou H., Chen Q., and Li G.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    CAS  Google Scholar 

  124. NREL: Availabe at: http://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg. 2018 (accessed April 2020).

  125. Kojima A., Teshima K., Shirai Y., and Miyasaka T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc.131, 6050–6051 (2009).

    CAS  Google Scholar 

  126. Li N., Zhu Z., Li J., Jen A., and Wang L.: Inorganic CsPb1−x Snx IBr2 for efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 8, 1800525 (2018).

    Google Scholar 

  127. Jiang H., Feng J., Zhao H., Li G., Yin G., Han Y., Yan F., Liu Z., and Liu S.: Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Adv. Sci. 5, 1801117 (2018).

    Google Scholar 

  128. Choi H., Jeong J., Kim H., Kim S., Walker B., Kim G., and Kim J.: Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014).

    CAS  Google Scholar 

  129. Eperon G., Paternò G., Sutton R., Zampetti A., Haghighirad A., Cacialli F., and Snaith H.: Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    CAS  Google Scholar 

  130. Swarnkar A., Marshall A., Sanehira E., Chernomordik B., Moore D., Christians J., Chakrabarti T., and Luther J.: Quantum dot-induced phase stabilization of -CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Google Scholar 

  131. Hu Y., Bai F., Liu X., Ji Q., Miao X., Qiu T., and Zhang S.: Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227 (2017).

    CAS  Google Scholar 

  132. Li B., Zhang Y., Fu L., Yu T., Zhou S., Zhang L., and Yin L.: Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9 (2018).

  133. Jiang Y., Yuan J., Ni Y., Yang J., Wang Y., Jiu T., Yuan M., and Chen J.: Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2, 1356–1368 (2018).

    Google Scholar 

  134. Zhang J., Bai D., Jin Z., Bian H., Wang K., Sun J., Wang Q., and Liu S.: Solar cells: 3D-2D-0D Interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv. Energy Mater. 8, 1703246–1703254 (2018).

    Google Scholar 

  135. Wang K., Jin Z., Liang L., Bian H., Bai D., Wang H., Zhang J., Wang Q., and Liu S.: Publisher correction: All-Inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 9 (2018).

  136. Zhang T., Wang F., Chen H., Ji L., Wang Y., Li C., Raschke M., and Li S.: Mediator–antisolvent strategy to stabilize all-inorganic Cspbi3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett. 5, 1619–1627 (2020).

    CAS  Google Scholar 

  137. Sutton R., Eperon G., Miranda L., Parrott E., Kamino B., Patel J., Hörantner M., Johnston M., Haghighirad A., Moore D., and Snaith H.: Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).

    Google Scholar 

  138. Yan L., Xue Q., Liu M., Zhu Z., Tian J., Li Z., Chen Z., Chen Z., Yan H., Yip H., and Cao Y.: Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater. 30, 1802509 (2018).

    Google Scholar 

  139. Wang Y., Zhang T., Xu F., Li Y., and Zhao Y.: A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells. Solar RRL 2, 1700180 (2017).

    Google Scholar 

  140. Hu Y., Zhang S., Shu T., Qiu T., Bai F., Ruan W., and Xu F.: Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite. J. Mater. Chem. A 6, 20365–20373 (2018).

    CAS  Google Scholar 

  141. Rao H., Ye S., Gu F., Zhao Z., Liu Z., Bian Z., and Huang C.: Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv. Energy Mater. 8, 1800758 (2018).

    Google Scholar 

  142. Wang H., Bian H., Jin Z., Zhang H., Liang L., Wen J., Wang Q., Ding L., and Liu S.: Cesium lead mixed-halide perovskites for low-energy loss solar cells with efficiency beyond 17%. Chem. Mater. 31, 6231–6238 (2019).

    CAS  Google Scholar 

  143. Chowdhury F., Alnuaimi A., El-Atab N., Nayfeh M., and Nayfeh A.: Enhanced performance of thin-film amorphous silicon solar cells with a top film of 2.85 nm silicon nanoparticles. Solar Energy 125, 332–338 (2016).

    CAS  Google Scholar 

  144. Chowdhury F., Alnuaimi A., El-Atab N., and Nayfeh A.: 12% Efficiency improvement in a-Si thin-film solar cells using ALD grown 2-nm-thick ZnO Nanoislands. In 43rd IEEE Photovoltaic Specialists Conference (Portland, Oregon, 2016).

  145. El-Atab N., Gamze Ulusoy T., Ghobadi A., Suh J., Islam R., Okyay A., Saraswat K., and Nayfeh A.: Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices. Nanotechnology 28, 445201 (2017).

    Google Scholar 

  146. El-Atab N., Chowdhury F., Ulusoy T., Ghobadi A., Nazirzadeh A., Okyay A., and Nayfeh A.: ~3-nm ZnO Nanoislands deposition and application in charge trapping memory grown by single ALD step. Sci. Rep. 6 (2016).

  147. El-Atab N., Ozcan A., Alkis S., Okyay A.K., and Nayfeh A.: 2-nm Laser-synthesized Si nanoparticles for low-power charge trapping memory devices. In 14th IEEE International Conference on Nanotechnology (Toronto, Canada, 2014); pp. 505–509. doi:10.1109/NANO.2014.6968168.

  148. El-Atab N. and Nayfeh A.: 1D versus 3D quantum confinement in 1–5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices. Nanotechnology 27, 275205 (2016).

    Google Scholar 

  149. El-Atab N., Saadat I., Saraswat K., and Nayfeh A.: Nano-islands based charge trapping memory: A scalability study. IEEE Trans. Nanotechnol. 16, 1143–1146 (2017).

    CAS  Google Scholar 

  150. Kayes B., Atwater H., and Lewis N.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Google Scholar 

  151. Cao L., Park J., Fan P., Clemens B., and Brongersma M.: Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    CAS  Google Scholar 

  152. Jia L., Fan G., Zi W., Ren X., Liu X., Liu B., and Liu S.: Ge quantum dot enhanced hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate. Solar Energy 144, 635–642 (2017).

    CAS  Google Scholar 

  153. Du Z., Liu M., Li Y., Chen Y., and Zhong X.: Titanium mesh based fully flexible highly efficient quantum dots sensitized solar cells. J. Mater. Chem. A 5, 5577–5584 (2017).

    CAS  Google Scholar 

  154. Ahn J., Chou H., and Banerjee S.: Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. J. Appl. Phys. 121, 163105 (2017).

    Google Scholar 

  155. El-Atab N., Turgut B., Okyay A., Nayfeh M., and Nayfeh A.: Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide. Nanoscale Res. Lett. 10 (2015).

  156. El-Atab N., Cimen F., Alkis S., Okyay A., and Nayfeh A.: Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer. Appl. Phys. Lett. 105, 033102 (2014).

    Google Scholar 

  157. Nayfeh A., Okyay A., El-Atab N., Cimen F., and Alkis S.: Transparent graphene nanoplatelets for charge storage in memory devices. ECS Trans. 37, 1879–1879 (2014).

    Google Scholar 

  158. Li X., Mariano M., McMillon-Brown L., Huang J., Sfeir M., Reed M., Jung Y., and Taylor A.: Charge transfer from carbon nanotubes to silicon in flexible carbon nanotube/silicon solar cells. Small 13, 1702387 (2017).

    Google Scholar 

  159. Bahabry R., Kutbee A., Khan S., Sepulveda A., Wicaksono I., Nour M., Wehbe N., Almislem A., Ghoneim M., Torres Sevilla G., Syed A., Shaikh S., and Hussain M.: Corrugation architecture enabled ultraflexible wafer-scale high-efficiency monocrystalline silicon solar cell. Adv. Energy Mater. 8, 1702221 (2018).

    Google Scholar 

  160. El-Atab N., Babatain W., Bahabry R., Alshanbari R., Shamsuddin R., and Hussain M.: Ultraflexible corrugated monocrystalline silicon solar cells with high efficiency (19%), improved thermal performance, and reliability using low-cost laser patterning. ACS Appl. Mater. Interfaces 12, 2269–2275 (2019).

    Google Scholar 

  161. Zhang Y., Xu S., Fu H., Lee J., Su J., Hwang K., Rogers J., and Huang Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062 (2013).

    CAS  Google Scholar 

  162. Son D., Lee J., Qiao S., Ghaffari R., Kim J., Lee J., Song C., Kim S., Lee D., Jun S., Yang S., Park M., Shin J., Do K., Lee M., Kang K., Hwang C., Lu N., Hyeon T., and Kim D.: Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    CAS  Google Scholar 

  163. Kim D., Ahn J., Choi W., Kim H., Kim T., Song J., Huang Y., Liu Z., Lu C., and Rogers J.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    CAS  Google Scholar 

  164. Bowden N., Brittain S., Evans A., Hutchinson J., and Whitesides G.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    CAS  Google Scholar 

  165. Lee J., Wu J., Shi M., Yoon J., Park S., Li M., Liu Z., Huang Y., and Rogers J.: Stretchable solar cells: Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23, 919–919 (2011).

    Google Scholar 

  166. Lee J., Wu J., Ryu J., Liu Z., Meitl M., Zhang Y., Huang Y., and Rogers J.: Flexible electronics: Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: Demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small 8, 1797–1797 (2012).

    Google Scholar 

  167. Nam J., Lee Y., Choi W., Kim C., Kim H., Kim J., Kim D., and Jo S.: Transfer printed flexible and stretchable thin film solar cells using a water-soluble sacrificial layer. Adv. Energy Mater. 6 (2016).

  168. Yoon S. and Khang D.: Stretchable, bifacial Si-organic hybrid solar cells by vertical array of Si micropillars embedded into elastomeric substrates. ACS Appl. Mater. Interfaces 11, 3290–3298 (2018).

    Google Scholar 

  169. El-Atab N., Qaiser N., Bahabry R., and Hussain M.M.: Corrugation enabled asymmetrically ultrastretchable (95%) monocrystalline silicon solar cells with high efficiency (19%). Adv. Energy Mater. 9, 1902883–1902889 (2019).

    CAS  Google Scholar 

  170. El-Atab N., Shamsuddin R., Bahabry R., and Hussain M.M.: High-efficiency corrugated monocrystalline silicon solar cells with multi-directional flexing capabilities. In 46th IEEE PVSC Proc. (Chicago, USA, 2019).

  171. Spee D., van der Werf K., Rath J.K., and Schropp R.: Excellent organic/inorganic transparent thin film moisture barrier entirely made by hot wire CVD at 100°C. Phys. Status Solidi RRL 6, 151–153 (2012).

    CAS  Google Scholar 

  172. Ali K., Choi K.-H., Jo J., and Lee Y.W.: High rate roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films towards gas diffusion barriers on polymers. Mater. Lett. 136, 90–94 (2014).

    CAS  Google Scholar 

  173. Bang S.-H., Hwang N.-M., and Kim H.-L.: Permeation barrier properties of silicon oxide films deposited on polyethylene terephthalate (PET) substrate using roll-to-roll reactive magnetron sputtering. Microelectron. Eng. 166, 39–44 (2016).

    CAS  Google Scholar 

  174. Elam F., Starostin S., Meshkova A., van der Velden-Schuermans B., Bouwstra J., van de Sanden M., and de Vries H.: Atmospheric pressure roll-to-roll plasma enhanced CVD of high quality silica-like bilayer encapsulation films. Plasma Processes Polym. 14, 1600143 (2017).

    Google Scholar 

  175. Seymour R.: New Developments (Academic Press, 1978), New York; p. 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Atab, N., Hussain, M.M. Flexible and stretchable inorganic solar cells: Progress, challenges, and opportunities. MRS Energy & Sustainability 7, 19 (2020). https://doi.org/10.1557/mre.2020.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.22

Keywords

Navigation