Abstract
State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
29 December 2020
An Erratum to this paper has been published: https://doi.org/10.1557/adv.2020.424
References
B. Baloğlu, Z. Chen, V. Elbrecht, T. Braukmann, S. MacDonald, and D. Steinke, “A workflow for accurate metabarcoding using nanopore MinION sequencing 1,” bioRxiv, p. 2020.05.21.108852, May 2020, doi: 10.1101/2020.05.21.108852.
V. L. Dao Thi et al.,, “A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples,” Sci. Transl. Med., vol. 12, no. 556, p. eabc7075, Aug. 2020, doi: 10.1126/scitranslmed.abc7075.
Q. Chen and Z. Liu, “Fabrication and applications of solid-state nanopores,” Sensors (Switzerland), vol. 19, no. 8. MDPI AG, Apr. 02, 2019, doi: 10.3390/s19081886.
U. M. Mirsaidov, D. Wang, W. Timp, and G. Timp, “Molecular diagnostics for personal medicine using a nanopore,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 4. NIH Public Access, pp. 367–381, Jul. 2010, doi: 10.1002/wnan.86.
G. Guglielmi, “The explosion of new coronavirus tests that could help to end the pandemic,” Nature, vol. 583, no. 7817, pp. 506–509, Jul. 2020, doi: 10.1038/d41586-020-02140-8.
S. George et al., “DNA Thermo-Protection Facilitates Whole Genome Sequencing of Mycobacteria Direct from Clinical Samples by the Nanopore Platform,” bioRxiv, p. 2020.04.05.026864, Apr. 2020, doi: 10.1101/2020.04.05.026864.
UK Government, “Roll-out of 2 new rapid coronavirus tests ahead of winter - GOV.UK,” 2020. https://www.gov.uk/government/news/roll-out-of-2-new-rapid-coronavirus-tests-ahead-of-winter (accessed Aug. 10, 2020).
“Novel Coronavirus (COVID-19) Overview.” https://nanoporetech.com/covid-19/overview (accessed Sep. 16, 2020).
P. James et al.,, “LamPORE: rapid, accurate and highly scalable molecular screening for SARS-CoV-2 infection, based on nanopore sequencing,” medRxiv, vol. 2020, no. January, p. 2020.08.07.20161737, 2020, doi: 10.1101/2020.08.07.20161737.
M. A. Sutton et al.,, “Radiation Tolerance of Nanopore Sequencing Technology for Life Detection on Mars and Europa,” Sci. Rep., vol. 9, no. 1, pp. 1–10, Dec. 2019, doi: 10.1038/s41598-019-41488-4.
T. Tucker, M. Marra, and J. M. Friedman, “Massively Parallel Sequencing: The Next Big Thing in Genetic Medicine,” American Journal of Human Genetics, vol. 85, no. 2. Am J Hum Genet, pp. 142–154, Aug. 14, 2009, doi: 10.1016/j.ajhg.2009.06.022.
J. Yang et al.,, “Photo-induced ultrafast active ion transport through graphene oxide membranes,” 2019. doi: 10.1038/s41467-019-09178-x.
S. S. Johnson, E. Zaikova, D. S. Goerlitz, Y. Bai, and S. W. Tighe, “Real-time DNA sequencing in the antarctic dry valleys using the Oxford nanopore sequencer,” J. Biomol. Tech., vol. 28, no. 1, pp. 2–7, Apr. 2017, doi: 10.7171/jbt.17-2801-009.
R. Meier, W. Wong, A. Srivathsan, and M. Foo, “$1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples,” Cladistics, vol. 32, no. 1, pp. 100–110, Feb. 2016, doi: 10.1111/cla.12115.
A. Viehweger et al.,, “Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis,” bioRxiv, p. 483693, Aug. 2018, doi: 10.1101/483693.
S. Howorka, “Building membrane nanopores,” Nature Nanotechnology, vol. 12, no. 7. Nature Publishing Group, pp. 619–630, Jul. 01, 2017, doi: 10.1038/nnano.2017.99.
Y. Liu and L. Yobas, “Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor,” ACS Nano, vol. 10, no. 4, pp. 3985–3994, 2016, doi: 10.1021/acsnano.6b00610.
S. W. Kowalczyk, A. Y. Grosberg, Y. Rabin, and C. Dekker, “Modeling the conductance and DNA blockade of solid-state nanopores,” Nanotechnology, vol. 22, no. 31, 2011, doi: 10.1088/0957-4484/22/31/315101.
L. Liang, J. W. Shen, Z. Zhang, and Q. Wang, “DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments,” Biosensors and Bioelectronics, vol. 89. Elsevier Ltd, pp. 280–292, Mar. 15, 2017, doi: 10.1016/j.bios.2015.12.037.
S. J. Heerema, G. F. Schneider, M. Rozemuller, L. Vicarelli, H. W. Zandbergen, and C. Dekker, “1/F Noise in Graphene Nanopores,” Nanotechnology, vol. 26, no. 7, p. 074001, Feb. 2015, doi: 10.1088/0957-4484/26/7/074001.
D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri, and K. Banerjee, “MoS2 field-effect transistor for next-generation label-free biosensors,” ACS Nano, vol. 8, no. 4, pp. 3992–4003, 2014, doi: 10.1021/nn5009148.
M. Mojtabavi, A. VahidMohammadi, W. Liang, M. Beidaghi, and M. Wanunu, “Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes,” ACS Nano, p. acsnano.8b08017, 2019, doi: 10.1021/acsnano.8b08017.
M. R.-E. Tanjil, Y. Jeong, Z. Yin, W. Panaccione, and M. C. Wang, “Ångstrom-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation,” Coatings, vol. 9, no. 2, p. 133, Feb. 2019, doi: 10.3390/coatings9020133.
K. Liu, J. Feng, A. Kis, and A. Radenovic, “Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation,” 2014, doi: 10.1021/nn406102h.
S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, “Graphene as a subnanometre trans-electrode membrane,” Nature, vol. 467, no. 7312, pp. 190–193, Sep. 2010, doi: 10.1038/nature09379.
S. Thomas, A. C. Rajan, M. R. Rezapour, and K. S. Kim, “In search of a two-dimensional material for DNA sequencing,” J. Phys. Chem. C, vol. 118, no. 20, pp. 10855–10858, 2014, doi: 10.1021/jp501711d.
S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, “Graphene as a subnanometre trans-electrode membrane,” Nature, vol. 467, no. 7312, pp. 190–193, Sep. 2010, doi: 10.1038/nature09379.
S. Su, X. Guo, Y. Fu, Y. Xie, X. Wang, and J. Xue, “Origin of nonequilibrium 1/: F noise in solid-state nanopores,” Nanoscale, vol. 12, no. 16, pp. 8975–8981, Apr. 2020, doi: 10.1039/c9nr09829a.
A. W. Robertson et al.,, “Spatial control of defect creation in graphene at the nanoscale,” Nat. Commun., vol. 3, no. 1, p. 1144, Jan. 2012, doi: 10.1038/ncomms2141.
C. M. Rochman, “The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment,” in Marine Anthropogenic Litter, Cham: Springer International Publishing, 2015, pp. 117–140.
C. J. Russo and J. A. Golovchenko, “Atom-by-atom nucleation and growth of graphene nanopores.,” Proc. Natl. Acad. Sci. U.S.A., vol. 109, no. 16, pp. 5953-7, Apr. 2012, doi: 10.1073/pnas.1119827109.
G. Danda et al.,, “Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes,” ACS Nano, vol. 11, no. 2, pp. 1937–1945, Feb. 2017, doi: 10.1021/acsnano.6b08028.
J. Feng et al.,, “Electrochemical reaction in single layer MoS2: Nanopores opened atom by atom,” Nano Lett., vol. 15, no. 5, pp. 3431–3438, 2015, doi: 10.1021/acs.nanolett.5b00768.
A. T. Kuan, B. Lu, P. Xie, T. Szalay, and J. A. Golovchenko, “Electrical pulse fabrication of graphene nanopores in electrolyte solution,” Appl. Phys. Lett., vol. 106, no. 20, May 2015, doi: 10.1063/1.4921620.
M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community,” Genome Biol., vol. 17, no. 1, pp. 1–11, Dec. 2016, doi: 10.1186/s13059-016-1103-0.
C. Wloka, N. L. Mutter, M. Soskine, and G. Maglia, “Alpha-Helical Fragaceatoxin C Nanopore Engineered for Double-Stranded and Single-Stranded Nucleic Acid Analysis,” Angew. Chemie - Int. Ed., vol. 55, no. 40, pp. 12494–12498, Sep. 2016, doi: 10.1002/anie.201606742.
J. Larkin, R. Henley, D. C. Bell, T. Cohen-Karni, J. K. Rosenstein, and M. Wanunu, “Slow DNA transport through nanopores in hafnium oxide membranes,” ACS Nano, vol. 7, no. 11, pp. 10121–10128, Nov. 2013, doi: 10.1021/nn404326f.
H. Qiu, A. Sarathy, K. Schulten, and J. P. Leburton, “Detection and mapping of DNA methylation with 2D material nanopores,” npj 2D Mater. Appl., vol. 1, no. 1, p. 3, Dec. 2017, doi: 10.1038/s41699-017-0005-7.
M. Belkin, S. H. Chao, M. P. Jonsson, C. Dekker, and A. Aksimentiev, “Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA,” ACS Nano, vol. 9, no. 11, pp. 10598–10611, Nov. 2015, doi: 10.1021/acsnano.5b04173.
J. M. Yang et al.,, “Surface-Enhanced Raman Scattering Probing the Translocation of DNA and Amino Acid through Plasmonic Nanopores,” Anal. Chem., vol. 91, no. 9, pp. 6275–6280, May 2019, doi: 10.1021/acs.analchem.9b01045.
M. Wanunu, W. Morrison, Y. Rabin, A. Y. Grosberg, and A. Meller, “Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient,” Nat. Nanotechnol., vol. 5, no. 2, pp. 160–165, Dec. 2010, doi: 10.1038/nnano.2009.379.
S. W. Kowalczyk, D. B. Wells, A. Aksimentiev, and C. Dekker, “Slowing down DNA translocation through a nanopore in lithium chloride,” Nano Lett., vol. 12, no. 2, pp. 1038–1044, 2012, doi: 10.1021/nl204273h.
M. Wanunu, J. Sutin, B. McNally, A. Chow, and A. Meller, “DNA translocation governed by interactions with solid-state nanopores,” Biophys. J., vol. 95, no. 10, pp. 4716–4725, Nov. 2008, doi: 10.1529/biophysj.108.140475.
B. Luan, G. Stolovitzky, and G. Martyna, “Slowing and controlling the translocation of DNA in a solid-state nanopore,” Nanoscale, vol. 4, no. 4, pp. 1068–1077, Feb. 2012, doi: 10.1039/c1nr11201e.
H. Peng and X. S. Ling, “Reverse DNA translocation through a solid-state nanopore by magnetic tweezers,” Nanotechnology, vol. 20, no. 18, p. 185101, Apr. 2009, doi: 10.1088/0957-4484/20/18/185101.
S. Van Dorp, U. F. Keyser, N. H. Dekker, C. Dekker, and S. G. Lemay, “Origin of the electrophoretic force on DNA in solid-state nanopores,” Nat. Phys., vol. 5, no. 5, pp. 347–351, Mar. 2009, doi: 10.1038/nphys1230.
R. Balasubramanian et al.,, “DNA Translocation through Hybrid Bilayer Nanopores,” J. Phys. Chem. C, vol. 123, no. 18, pp. 11908–11916, May 2019, doi: 10.1021/acs.jpcc.9b00399.
M. H. Lee et al.,, “A low-noise solid-state nanopore platform based on a highly insulating substrate,” Sci. Rep., vol. 4, Dec. 2014, doi: 10.1038/srep07448.
G. F. Schneider et al.,, “DNA translocation through graphene nanopores,” Nano Lett., vol. 10, no. 8, pp. 3163–3167, 2010, doi: 10.1021/nl102069z.
S. J. Heerema, L. Vicarelli, S. Pud, R. N. Schouten, H. W. Zandbergen, and C. Dekker, “Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore,” ACS Nano, vol. 12, no. 3, pp. 2623–2633, Mar. 2018, doi: 10.1021/acsnano.7b08635.
T. Haynes, I. P. S. Smith, E. J. Wallace, J. L. Trick, M. S. P. Sansom, and S. Khalid, “Electric-field-driven translocation of ssDNA through hydrophobic nanopores,” ACS Nano, vol. 12, no. 8, pp. 8208–8213, 2018, doi: 10.1021/acsnano.8b03365.
M. Graf, M. Lihter, D. Altus, S. Marion, and A. Radenovic, “Transverse Detection of DNA Using a MoS2 Nanopore,” Nano Lett., vol. 19, no. 12, pp. 9075–9083, 2019, doi: 10.1021/acs.nanolett.9b04180.
“SERS/TERS.” https://www.renishaw.com/en/sers-ters—25811 (accessed Sep. 18, 2020).
J. Cao et al.,, “SERS Detection of Nucleobases in Single Silver Plasmonic Nanopores,” ACS sensors, vol. 5, no. 7, pp. 2198–2204, Jul. 2020, doi: 10.1021/acssensors.0c00844.
J. A. Huang et al.,, “SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping,” Nat. Commun., vol. 10, no. 1, pp. 1–10, Dec. 2019, doi: 10.1038/s41467-019-13242-x.
C. Chen et al.,, “High spatial resolution nanoslit SERS for single-molecule nucleobase sensing,” Nat. Commun., vol. 9, no. 1, pp. 1–9, Dec. 2018, doi: 10.1038/s41467-018-04118-7.
Z. He et al.,, “Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution,” J. Am. Chem. Soc., vol. 141, no. 2, pp. 753–757, 2019, doi: 10.1021/jacs.8b11506.
J. D. Spitzberg, A. Zrehen, X. F. van Kooten, and A. Meller, “Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection,” Adv. Mater., vol. 31, no. 23, p. 1900422, Jun. 2019, doi: 10.1002/adma.201900422.
D. Garoli et al.,, “Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes,” Nanoscale, vol. 10, no. 36, pp. 17105–17111, Sep. 2018, doi: 10.1039/c8nr05026k.
D. Garoli, H. Yamazaki, N. MacCaferri, and M. Wanunu, “Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications,” Nano Lett., vol. 19, no. 11, pp. 7553–7562, 2019, doi: 10.1021/acs.nanolett.9b02759.
L. Restrepo-Pérez, C. Joo, and C. Dekker, “Paving the way to single-molecule protein sequencing,” Nature Nanotechnology, vol. 13, no. 9. Nature Publishing Group, pp. 786–796, Sep. 01, 2018, doi: 10.1038/s41565-018-0236-6.
A. Srivathsan et al.,, “A MinIONTM-based pipeline for fast and cost-effective DNA barcoding,” Mol. Ecol. Resour., vol. 18, no. 5, pp. 1035–1049, Sep. 2018, doi: 10.1111/1755-0998.12890.
D. P. Hoogerheide, S. Garaj, and J. A. Golovchenko, “Probing surface charge fluctuations with solid-state nanopores,” Phys. Rev. Lett., vol. 102, no. 25, 2009, doi: 10.1103/PhysRevLett.102.256804.
M. R. Powell et al.,, “Noise properties of rectifying nanopores,” J. Phys. Chem. C, vol. 115, no. 17, pp. 8775–8783, May 2011, doi: 10.1021/jp2016038.
Z. Y. Zhang, Y. S. Deng, H. B. Tian, H. Yan, H. L. Cui, and D. Q. Wang, “Noise analysis of monolayer graphene nanopores,” Int. J. Mol. Sci., vol. 19, no. 9, p. 2639, Sep. 2018, doi: 10.3390/ijms19092639.
A. Fragasso, S. Schmid, and C. Dekker, “Comparing Current Noise in Biological and Solid-State Nanopores,” ACS Nano, vol. 14, no. 2, pp. 1338–1349, 2020, doi: 10.1021/acsnano.9b09353.
A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley, and C. Dekker, “Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores,” Nat. Nanotechnol., vol. 5, no. 12, pp. 874–877, 2010, doi: 10.1038/nnano.2010.237.
E. M. Nelson, H. Li, and G. Timp, “Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography,” ACS Nano, vol. 8, no. 6, pp. 5484–5493, Jun. 2014, doi: 10.1021/nn405331t.
U. F. Keyser et al.,, “Direct force measurements on DNA in a solid-state nanopore,” Nat. Phys., vol. 2, no. 7, pp. 473–477, Jul. 2006, doi: 10.1038/nphys344.
A. B. Farimani, P. Dibaeinia, and N. R. Aluru, “DNA origami-graphene hybrid nanopore for DNA detection,” ACS Appl. Mater. Interfaces, vol. 9, no. 1, pp. 92–100, 2017, doi: 10.1021/acsami.6b11001.
M. T. Hwang et al.,, “Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors,” Nat. Commun., vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-15330-9.
V. Shukla, N. K. Jena, A. Grigoriev, and R. Ahuja, “Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing,” ACS Appl. Mater. Interfaces, vol. 9, no. 46, pp. 39945–39952, 2017, doi: 10.1021/acsami.7b06827.
S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, “Fast DNA sequencing with a graphene-based nanochannel device,” Nat. Nanotechnol., vol. 6, no. 3, pp. 162–165, 2011, doi: 10.1038/nnano.2010.283.
B. Luan and R. Zhou, “Single-File Protein Translocations through Graphene-MoS2 Heterostructure Nanopores,” J. Phys. Chem. Lett., vol. 9, no. 12, pp. 3409–3415, Jun. 2018, doi: 10.1021/acs.jpclett.8b01340.
Author information
Authors and Affiliations
Corresponding author
Additional information
*These authors contributed equally to this work.
Rights and permissions
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Shepherd, B.A., Tanjil, M.RE., Jeong, Y. et al. Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens. MRS Advances 5, 2889–2906 (2020). https://doi.org/10.1557/adv.2020.402
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.402