[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Controlling Band Alignment at the Back Interface of Cadmium Telluride Solar Cells using ZnTe and Te Buffer Layers

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Formation of a low barrier back contact plays a critical role in improving the photoconversion efficiency of the CdTe solar cells. Incorporating a buffer layer to minimize the band bending at the back of the CdTe device can significantly lower the barrier for the hole current, improving open circuit voltage (VOC) and the fill factor. Over the past years, researchers have incorporated the both ZnTe and Te as buffer layers to improve CdTe device performance. Here we compare device performance using these two materials as buffer layers at the back of CdTe devices. We show that using Te in contact to CdTe results in higher performance than using ZnTe in contact to the CdTe. Low temperature current density-voltage measurements show that Te results is a lower barrier with CdTe than ZnTe, indicating that Te has better band alignment, resulting in less downward bending in the CdTe at the back interface, than ZnTe does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NERL: Solar Cells Efficiency Cart (2018) Available at: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg/ncpv/images/efficiency_chart.jpg; (accessed 9 December 2018).

  2. A. H. Munshi, J. Kephart, A. Abbas, J. Raguse, J. N. Beaudry, K. Barth, J. Sites, J. Walls, and W. Sampath, IEEE J. Photovolt. 8 (1), 310–314 (2018).

    Article  Google Scholar 

  3. W. Shockley and H. J. Queisser, J. Appl. Phys. 32 (3), 510–519 (1961).

    Article  CAS  Google Scholar 

  4. T. Song, A. Moore, and J. R. Sites, IEEE J. Photovolt. 8 (1), 293–298 (2018).

    Article  Google Scholar 

  5. T. A. Gessert, A. R. Mason, P. Sheldon, A. B. Swartzlander, D. Niles, and T. J. Coutts, J. Vacu. Sci. Tech. A 14 (3), 806–812 (1996).

    Article  CAS  Google Scholar 

  6. J. Li, D. R. Diercks, T. R. Ohno, C. W. Warren, M. C. Lonergan, J. D. Beach, and C. A. Wolden, Sol. Energy Mater. Sol. Cells 133, 208 (2015).

    Article  CAS  Google Scholar 

  7. J. V. Li, J. N. Duenow, D. Kuciauskas, A. Kanevce, R. G. Dhere, M. R. Young, and D. H. Levi, IEEE J. Photovolt. 3 (3), 1095–1099 (2013).

    Article  Google Scholar 

  8. Y. Kwon, J. Seo, Y. Kang, D. Kim, and J. Kim, Opt. Express 26 (2), A30–A38 (2018).

    Article  CAS  Google Scholar 

  9. X. Li, D. W. Niles, F. S. Hasoon, R. J. Matson, and P. Sheldon, J. Vacu. Sci. Tech. A 17 (3), 805–809 (1999).

    Article  CAS  Google Scholar 

  10. D. L. Bätzner, A. Romeo, H. Zogg, R. Wendt, and A. N. Tiwari, Thin Solid Films 387 (1), 151–154 (2001).

    Article  Google Scholar 

  11. R. Ochoa-Landín, O. Vigil-Galan, Y. V. Vorobiev, and R. Ramírez-Bon, Sol. Energy 83 (1), 134–138 (2009).

    Article  Google Scholar 

  12. N. Abbas Shah, A. Ali, Z. Ali, A. Maqsood, and A. K. S. Aqili, J. Crystal Growth 284 (3), 477–485 (2005).

    Article  CAS  Google Scholar 

  13. A. Moore, T. Song, and J. Sites, MRS Adv. 2 (53), 3195-3201 (2017).

    Article  CAS  Google Scholar 

  14. S. C. Watthage, A. B. Phillips, G. K. Liyanage, Z. Song, J. M. Gibbs, F. K. Alfadhili, R. B. Alkhayat, R. H. Ahangharnejhad, Z. S. Almutawah, K. P. Bhandari, R. J. Ellingson, and M. J. Heben, IEEE J. Photovolt. 8 (4), 1125–1131 (2018).

    Article  Google Scholar 

  15. S. C. Watthage, Z. Song, N. Shrestha, A. B. Phillips, G. K. Liyanage, P. J. Roland, R. J. Ellingson, and M. J. Heben, MRS Adv. 2 (21–22), 1183–1188 (2017).

    Article  CAS  Google Scholar 

  16. R. G. Bohn, C. N. Tabory, C. Deak, M. Shao, A. D. Compaan, and N. Reiter, 1994 IEEE 1st World Conf. on Photovolt. Energy Conv. (WCPEC) (A Joint Conference of PVSC, PVSEC and PSEC), 1, 354–356 (1994).

    Google Scholar 

  17. A. Jarkov, S. Bereznev, O. Volobujeva, R. Traksmaa, A. Tverjanovich, A. Öpik, and E. Mellikov, Thin Solid Films 535, 198 (2013).

    Article  CAS  Google Scholar 

  18. A. Niemegeers and M. Burgelman, J. Appl. Phys. 81 (6), 2881–2886 (1997).

    Article  CAS  Google Scholar 

  19. T. Shalvey, L. Phillips, K. Durose, and J. Major, 7th IEEE World Conf. on Photovolt. Energy Conv. (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 0446–0851 (2018).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfadhili, F.K., Phillips, A.B., Liyanage, G.K. et al. Controlling Band Alignment at the Back Interface of Cadmium Telluride Solar Cells using ZnTe and Te Buffer Layers. MRS Advances 4, 913–919 (2019). https://doi.org/10.1557/adv.2019.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.31

Navigation