[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 15, 2017

A Cost-Effective High-Speed Radio over Fibre System for Millimeter Wave Applications

  • Abhishek Sharma , Sushank Chaudhary EMAIL logo , Deepika Thakur and Vigneswaran Dhasratan

Abstracts

Future 5 G networks can enhance their wireless capacity and speed by effectively using high-frequency millimetre waves. Radio over fibres (RoF) is the promising technology to deliver millimetre waves over optical fibres as it integrates radio domain with wireless domain. The current study employed cost-effective non-return to zero scheme to encode 10 Gbps – 60 GHz data and wavelength division multiplexing scheme to transmit four channels over 60 km optical fibre link.

References

1. Alsharif MH, Nordin R. Evolution towards fifth generation (5 G) wireless networks: current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommun Syst. 2017;64(4):617–37.10.1007/s11235-016-0195-xSearch in Google Scholar

2. Abdelwahab S, Hamdaoui B, Guizani M, Znati T. Network function virtualization in 5G. IEEE Commun Mag. 2016;54:84–91.10.1109/MCOM.2016.7452271Search in Google Scholar

3. Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M., et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag. 2014;52:26–35.10.1109/MCOM.2014.6815890Search in Google Scholar

4. Best J. The race to 5 G: inside the fight for the future of mobile as we know it. San Francisco (CA, USA): Techrepublic-CBS Interactive, 2014. [consult: 10/ 07/2015].Search in Google Scholar

5. Vu TK, Liu CF, Bennis M, Debbah M, Latva-aho M, Hong CS. Ultra-Reliable and Low Latency Communication in mmWave-Enabled Massive MIMO Networks. IEEE Communications Lett. 2017;21:2041–44.10.1109/LCOMM.2017.2705148Search in Google Scholar

6. Waterhouse R, Novack D. Realizing 5 G: microwave photonics for 5 G mobile wireless systems. IEEE Microwave Mag. 2015;16(8):84–92.10.1109/MMM.2015.2441593Search in Google Scholar

7. Jungnickel V, Manolakis K, Zirwas W, Panzner B, Braun V, Lossow M., et al. The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag. 2014;52:44–51.10.1109/MCOM.2014.6815892Search in Google Scholar

8. Foschini G, Karakayali K, Valenzuela R. Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency. IEE Proc-Commun. 2006;153(4):548–55.10.1049/ip-com:20050423Search in Google Scholar

9. Bai T, Alkhateeb A, Heath RW. Coverage and capacity of millimeter-wave cellular networks. IEEE Commun Mag. 2014;52(9):70–77.10.1109/MCOM.2014.6894455Search in Google Scholar

10. Sulyman AI, Nassar AT, Samimi MK, Maccartney GR, Rappaport TS, Alsanie A. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun Mag. 2014;52:78–86.10.1109/MCOM.2014.6894456Search in Google Scholar

11. Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F. Millimeter-wave massive MIMO: the next wireless revolution?. IEEE Commun Mag. 2014;52:56–62.10.1109/MCOM.2014.6894453Search in Google Scholar

12. Ngo HQ, Larsson EG, Marzetta TL. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun. 2013;61(4):1436–49.10.1109/TCOMM.2013.020413.110848Search in Google Scholar

13. Chang G-K, Liu C. 1–100 GHz microwave photonics link technologies for next-generation WiFi and 5 G wireless communications. in 2013 International Topical Meeting on Microwave Photonics (MWP). 2013. IEEE.10.1109/MWP.2013.6724005Search in Google Scholar

14. Medbo J, Kyosti P, Kusume K, Raschkowski L, Haneda K, Jamsa T., et al. Radio propagation modeling for 5 G mobile and wireless communications. IEEE Commun Mag. 2016;54(6):144–51.10.1109/MCOM.2016.7498102Search in Google Scholar

15. Dehos C, González JL, Domenico AD, Kténas D, Dussopt L. Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5 G mobile communications systems?. IEEE Commun Mag. 2014;52(9):88–95.10.1109/MCOM.2014.6894457Search in Google Scholar

16. Liu C, Zhang L, Zhu M, Wang J, Cheng L, Chang G-K. A Novel Multi-Service Small-Cell Cloud Radio Access Network for Mobile Backhaul and Computing Based on Radio-Over-Fiber Technologies. J. Lightwave Technol. 2013;31:2869-75.10.1109/JLT.2013.2274193Search in Google Scholar

17. Liu C, Cvijetic N, Sundaresan K, Jiang M, Rangarajan S, Wang T., et al. A novel in-building small-cell backhaul architecture for cost-efficient multi-operator multi-service coexistence. in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). 2013. IEEE.10.1364/OFC.2013.OTh4A.4Search in Google Scholar

18. Chaudhary S, Thakur D, Sharma A. 10 Gbps-60 GHz RoF transmission system for 5 G applications. J Opt Commun.10.1515/joc-2017-0079Search in Google Scholar

19. Yin X, Wen A, Chen Y. A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse. Fiber Integr Opt. 2011;30(6):347–55.Search in Google Scholar

20. Chaudhary S, Bansal P, Lumb M. Effect of beam divergence on WDM-FSO transmission system. Int J Comput Appl. 2014;93(1):28–32.10.5120/16181-5397Search in Google Scholar

21. Chaudhary S, Sharma A. 6 x 20Gbps long reach WDM-PI based high altitude platform inter-satellite communication system. Int J Comput Appl. 2015;122(22):41–45.10.5120/21861-5192Search in Google Scholar

22. Chaudhary S, Sharma A, Chaudhary N. 6×20 Gbps hybrid WDM–PI inter-satellite system under the influence of transmitting pointing errors. J Opt Commun. 2016;37(4):375–79.10.1515/joc-2015-0099Search in Google Scholar

23. Kaur R, Chaudhary S. Simulative investigation of laser line-width and channel spacing for realization of DWDM systems under the impact of four wave mixing. J Opt Commun. 2014;35(2):157–65.10.1515/joc-2013-0152Search in Google Scholar

24. Sharma V, Kumar S. Empirical evaluation of wired-and wireless-hybrid OFDM–OSSB–roF transmission system. Optik-Int J Light Opt. 2013;124(20):4529–32.10.1016/j.ijleo.2013.01.045Search in Google Scholar

25. Sharma V, Kumar S. Hybrid OFDM-OSSB-RoF transmission system incorporating fiber Bragg grating. Optik-Int J Light Opt. 2013;124(20):4670–72.10.1016/j.ijleo.2013.01.068Search in Google Scholar

26. Alavi SE, Soltanian MRK, Amiri IS, Khalily M, Supa’at ASM, Ahmad H. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Front haul. Scientific Reports 6. 2016. Article number: 19891. DOI: 10.1038/srep19891.Search in Google Scholar PubMed PubMed Central

27. Wang H-Y, Chi Y-C, Lin G-R. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5 G millimeter-wave radio-over-fiber link. Opt Express. 2016;24(16):17654–69.10.1364/OE.24.017654Search in Google Scholar PubMed

28. Mikroulis S, Xu T, Darwazeh I. Practical demonstration of spectrally efficient FDM millimeter-wave radio over fiber systems for 5 G cellular networking. in Proc. SPIE. 2016.10.1117/12.2216230Search in Google Scholar

Received: 2017-09-22
Accepted: 2017-12-04
Published Online: 2017-12-15
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2025 from https://www.degruyter.com/document/doi/10.1515/joc-2017-0166/html
Scroll to top button