[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we deal with the initial-boundary-value problems for a general time-fractional diffusion equation which generalizes the single- and the multi-term time-fractional diffusion equations as well as the time-fractional diffusion equation of the distributed order. First, important estimates for the general time-fractional derivatives of the Riemann-Liouville and the Caputo type of a function at its maximum point are derived. These estimates are applied to prove a weak maximum principle for the general time-fractional diffusion equation. As an application of the maximum principle, the uniqueness of both the strong and the weak solutions to the initial-boundary-value problem for this equation with the Dirichlet boundary conditions is established. Finally, the existence of a suitably defined generalized solution to the the initial-boundary-value problem with the homogeneous boundary conditions is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Refai, Yu. Luchko, Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17, No 2, (2014), 483–498; DOI: 10.2478/s13540-014-0181-5; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml

    Article  MathSciNet  Google Scholar 

  2. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A, Math. Gen. 38 (2005), 679–684.

    Article  MathSciNet  Google Scholar 

  3. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6 (2003), 259–279.

    MathSciNet  MATH  Google Scholar 

  4. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations. Phys. Rev. E. 66 (2002), 1–7.

    Article  Google Scholar 

  5. V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 345 (2008), 754–765.

    Article  MathSciNet  Google Scholar 

  6. W. Feller, An Introduction to Probability Theory and its Applications. 2, Wiley, New York (1966).

  7. H. Jiang, F. Liu, I.W. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Computers and Math. with Appl. 64 (2012), 3377–3388.

    Article  MathSciNet  Google Scholar 

  8. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integr. Equa. Operator Theory. 71 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  9. A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MathSciNet  Google Scholar 

  10. Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. and Computation. 257 (2015), 381–397.

    Article  MathSciNet  Google Scholar 

  11. Z. Li, Yu. Luchko, M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, No 4, (2014), 1114–1136; DOI: 10.2478/s13540-014-0217-x; http://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml

    Article  MathSciNet  Google Scholar 

  12. Yu. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 15, No 1, (2012), 141–160; DOI: 10.2478/s13540-012-0010-7; http://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml

    Article  MathSciNet  Google Scholar 

  13. Yu. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.

    Article  MathSciNet  Google Scholar 

  14. Yu. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59, No 5, (2010), 1766–1772.

    Article  MathSciNet  Google Scholar 

  15. Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, No 1, (2009), 218–223.

    Article  MathSciNet  Google Scholar 

  16. Yu. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12 (2009), 409–422; http://www.math.bas.bg/fcaa

    MathSciNet  MATH  Google Scholar 

  17. Yu. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2 (1999), 463–489.

    MathSciNet  MATH  Google Scholar 

  18. Yu. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24, No 2, (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  19. M.M. Meerschaert, H.-P. Scheffler, Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006), 1215–1235.

    Article  MathSciNet  Google Scholar 

  20. R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014), 24128.

    Article  Google Scholar 

  21. M. Naber, Distributed order fractional subdiffusion. Fractals. 12 (2004), 23–32.

    Article  MathSciNet  Google Scholar 

  22. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations. Springer, Berlin (1999).

    MATH  Google Scholar 

  23. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, No 1, (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  24. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).

    MATH  Google Scholar 

  25. R.L. Schilling, R. Song, Z. Vondracek, Bernstein Functions. Theory and Application. De Gruyter, Berlin (2010).

    MATH  Google Scholar 

  26. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

    Article  MathSciNet  Google Scholar 

  27. I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-order fractional kinetics. Acta Phys. Polon. B. 35 (2004), 1323–1341.

    Google Scholar 

  28. A. Suzuki, Y. Niibori, S.A. Fomin, V.A. Chugunov, T. Hashida, Prediction of reinejction effects in fault-related subsidiary structures by using fractional derivative-based mathematical models for sustainable design of geothermal reservoirs. Geothermics. 57 (2015), 196–204.

    Article  Google Scholar 

  29. A. Suzuki, Y. Niibori, S.A. Fomin, V.A. Chugunov, T. Hashida, Analysis of water injection in fractured reservoirs using a fractional-derivative-based mass and heat transfer model. Mathematical Geosciences. 47 (2014), 31–49.

    Article  Google Scholar 

  30. S. Umarov, R. Gorenflo, Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations. Z. Anal. Anwend. 24 (2005), 449–466.

    MathSciNet  MATH  Google Scholar 

  31. V.S. Vladimirov, Equations of Mathematical Physics. Nauka, Moscow (1971).

    MATH  Google Scholar 

  32. W. Walter, On the strong maximum principle for parabolic differential equations. Proc. Edinb. Math. Soc. 29 (1986), 93–96.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Luchko.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchko, Y., Yamamoto, M. General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. FCAA 19, 676–695 (2016). https://doi.org/10.1515/fca-2016-0036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0036

MSC 2010

Key Words and Phrases

Navigation