[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Decay solutions for a class of fractional differential variational inequalities

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Our aim is to study a new class of differential variational inequalities involving fractional derivatives. Using the fixed point approach, the existence of decay solutions to the mentioned problem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 264, Springer- Verlag, Berlin (1984).

  2. R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii, Measures of Noncompactness and Condensing Operators. Birkh¨auser, Boston-Basel-Berlin (1992).

    Book  Google Scholar 

  3. R.P. Agarwal, M. Benchohra, and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, No 3 (2010), 973–1033.

    Article  MathSciNet  Google Scholar 

  4. E.P. Avgerinos, N.S. Papageorgiou, Differential variational inequalities in RN. Indian J. Pure Appl. Math. 28, No 9 (1997), 1267–1287.

    MathSciNet  MATH  Google Scholar 

  5. J. Banas, L. Olszowy, On a class of measures of noncompactness in banach algebras and their application to nonlinear integral equations. J. Anal. Appl. 28 (2009), 475–498.

    MathSciNet  MATH  Google Scholar 

  6. K. Balachandran, Yong Zhou, J. Kokila, Relative controllability of fractional dynamical systems with distributed delays in control. Comput. Math. Appl. 64 (2012), 3201–3209.

    Article  MathSciNet  Google Scholar 

  7. K. Balachandran, J.Y. Park, J.J. Trujillo, Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 75 (2012), 1919–1926.

    Article  MathSciNet  Google Scholar 

  8. K. Balachandran, V. Govindaraj, M. Rivero, J.A. Tenreiro Machado, J.J. Trujillo, Observability of nonlinear fractional dynamical systems. Abstr. Appl. Anal. (2013), Art. ID 346041.

    Google Scholar 

  9. D. Bothe, Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108 (1998), 109–138.

    Article  MathSciNet  Google Scholar 

  10. J. Diestel, W.M. Ruess, W. Schachermayer, Weak compactness in Ll(μ,X). Proc. Amer. Math. Soc. 118 (1993), 447–453.

    MathSciNet  MATH  Google Scholar 

  11. I. Ekeland, R. Temam, Convex Analysis and Variational Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia - PA (1999).

    Book  Google Scholar 

  12. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, # 194, Springer- Verlag, New York (2000).

    MATH  Google Scholar 

  13. Tian Liang Guo, The necessary conditions of fractional optimal control in the sense of Caputo. J. Optim. Theory Appl. 156 (2013), 115–126.

    Article  MathSciNet  Google Scholar 

  14. J. Gwinner, On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Discrete Contin. Dynam. Syst. (Dynamical Systems and Differential Equations. Proc. of the 6th AIMS Internat. Conference), Suppl. (2007), 467–476.

    Google Scholar 

  15. J. Gwinner, A note on linear differential variational inequalities in hilbert spaces. Syst. Model. Optim. 391 (2013), 85–91.

    Article  MathSciNet  Google Scholar 

  16. H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011 (2011), Art ID 298628, 51 pages.

  17. J.K. Hale, S.M. Verduyn Lunel, Theory of Functional Differential Equations. Springer-Verlag, New York (1993).

    MATH  Google Scholar 

  18. M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin - New York (2001).

    Book  Google Scholar 

  19. T.D. Ke, V. Obukhovskii, N.C. Wong, J.C. Yao, On a class of fractional order differential inclusions with infinite delays. Appl. Anal. 92 (2013), 115–137.

    Article  MathSciNet  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  21. V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Res. Notes in Math. Ser. #301, Longman Sci. and Techn., Harlow & John Wiley, New York (1994).

    MATH  Google Scholar 

  22. Z. Liu, N.V. Loi, V. Obukhovskii, Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Int. J. Bifur. Chaos. 23, No 7 (2013), # 1350125.

    Google Scholar 

  23. K.S. Millerand B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York (1993).

    Google Scholar 

  24. V. Obukhovskii and J.-C. Yao, Some existence results for fractional functional differential equations. Fixed Point Theory 11, No 1 (2010), 85–96.

    MathSciNet  MATH  Google Scholar 

  25. J.-S. Pang, D.E. Steward, Differential variational inequalities. Math. Program. Ser. A 113 (2008), 345–424.

    Article  MathSciNet  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Math. in Science and Engin. # 198, Academic Press, San Diego - CA (1999).

    MATH  Google Scholar 

  27. T.I. Seidman, Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25 (1987), 1173–1191.

    Article  MathSciNet  Google Scholar 

  28. R.-N. Wang, D.-H. Chena, T.-J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252 (2012), 202–235.

    Article  MathSciNet  Google Scholar 

  29. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comp. Math. Appl. 59 (2010), 1063–1077.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Dinh Ke.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, T.D., Loi, N.V. & Obukhovskii, V. Decay solutions for a class of fractional differential variational inequalities. FCAA 18, 531–553 (2015). https://doi.org/10.1515/fca-2015-0033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0033

Keywords

MSC 2010

Navigation