Zusammenfassung
Die Automatisierung von Fahrzeuggespannen bedarf einer präzisen Manöverplanung, um das Gespann kollisionsfrei von einem initialen Zustand in einen gewünschten Zustand zu überführen. Durch Wahl einer Architektur, welche die Stärken verschiedener Planungsverfahren kombiniert, kann ein effizientes Zusammenspiel aus lokaler und globaler Trajektorienplanung erzielt werden. Die resultierende globale Lösung wird anschließend mit einem optimalen Geschwindigkeitsprofil versehen und die gewünschten Fahreigenschaften mittels Verfahren der numerischen Optimierung umgesetzt.
Abstract
The automation of truck-trailer combinations requires precise planning of the driving maneuvers to move the system from an initial state to a desired state without collisions. By choosing an architecture that combines the strengths of different planning algorithms, an efficient interaction of local and global methods can be achieved. For the resulting global solution an optimal velocity profile is computed and the desired driving characteristics are achieved using numerical optimization techniques.
Über die Autoren
Julian Dahlmann erhielt den M.Sc. in Elektrotechnik von der Friedrich-Alexander-Universität Erlangen-Nürnberg und promoviert dort derzeit am Lehrstuhl für Regelungstechnik. Seine Forschungsinteressen umfassen autonomes Manövrieren von Fahrzeuggespannen.
Dr.-Ing. Andreas Völz ist akademischer Rat am Lehrstuhl für Regelungstechnik der Friedrich-Alexander-Universität Erlangen-Nürnberg. Hauptarbeitgsgebiete: lokale Optimierungsverfahren für Anwendungen in der Robotik, kollisionsfreie Bewegungsplanung, nichtlineare modellprädiktive Regelung.
Prof. Dr.-Ing. Knut Graichen ist Leiter des Lehrstuhls für Regelungstechnik der Friedrich-Alexander-Universität Erlangen-Nürnberg. Hauptarbeitsgebiete: optimale und modellprädiktive Regelung, eingebettete Umsetzung von optimierungsbasierten Verfahren für mechatronische und vernetzte Systeme.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
Literatur
[1] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved optimization of motion primitives for motion planning in state lattices,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 2307–2314.10.1109/IVS.2019.8813872Search in Google Scholar
[2] F. Ghilardelli, G. Lini, and A. Piazzi, “Path generation using η4-splines for a truck and trailer vehicle,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1, pp. 187–203, 2014.10.1109/TASE.2013.2266962Search in Google Scholar
[3] A. Piazzi, L. Guarino, and M. Romano, “Smooth path generation for wheeled mobile robots using η3-splines,” IEEE Trans. Robot., vol. 23, no. 5, pp. 1089–1095, 2007. https://doi.org/10.1109/tro.2007.903816.Search in Google Scholar
[4] P. Rouchon, M. Fliess, J. Levine, and P. Martin, “Flatness and motion planning: the car with n trailers,” in Proceedings of IEEE European Control Conf. (ECC), 1993, pp. 1518–1522.Search in Google Scholar
[5] M. M. Michałek and D. Pazderski, “Computing the admissible reference state-trajectories for differentially non-flat kinematics of non-standard n-trailers,” in Proceedings of IEEE European Control Conf. (ECC), 2018, pp. 551–556.10.23919/ECC.2018.8550048Search in Google Scholar
[6] M. M. Michałek and D. Pazderski, “Reconstruction of admissible joint-references from a prescribed output-reference for the non-standard and generalized n-trailers,” Eur. J. Control, vol. 58, pp. 60–73, 2020, https://doi.org/10.1016/j.ejcon.2020.11.003.Search in Google Scholar
[7] J. Dahlmann, A. Völz, T. Szabo, and K. Graichen, “A numerical approach for solving the inversion problem for n-trailer systems,” in Proceedings of American Control Conference (ACC), 2022, pp. 2018–2024.10.23919/ACC53348.2022.9867593Search in Google Scholar
[8] S. LaValle, “Rapidly-exploring random trees: a new tool for path planning,” Computer Science Department, Iowa State University, tech. rep., 1998.Search in Google Scholar
[9] S. LaValle, Planning Algorithms, New York, Cambridge University Press, 2006.10.1017/CBO9780511546877Search in Google Scholar
[10] N. Evestedt, O. Ljungqvist, and D. Axehill, “Motion planning for a reversing general 2-trailer configuration using closed-loop RRT,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 3690–3697.10.1109/IROS.2016.7759544Search in Google Scholar
[11] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic motion planning using any-angle path biasing,” in Proceedings of the International Conference on Robotics and Automation (ICRA), 2016, pp. 2775–2781.10.1109/ICRA.2016.7487439Search in Google Scholar
[12] A. J. Rimmer and D. Cebon, “Planning collision-free trajectories for reversing multiply-articulated vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 7, pp. 1998–2007, 2016. https://doi.org/10.1109/tits.2015.2511880.Search in Google Scholar
[13] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion planning in state lattices,” J. Field Robot., vol. 26, no. 3, pp. 308–333, 2009. https://doi.org/10.1002/rob.20285.Search in Google Scholar
[14] O. Ljungqvist, N. Evestedt, M. Cirillo, D. Axehill, and O. Holmer, “Lattice-based motion planning for a general 2-trailer system,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 819–824.10.1109/IVS.2017.7995817Search in Google Scholar
[15] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion planning for nonlinear systems with symmetries,” IEEE Trans. Robot., vol. 21, no. 6, pp. 1077–1091, 2005. https://doi.org/10.1109/tro.2005.852260.Search in Google Scholar
[16] M. Pedrosa, T. Schneider, and K. Flaßkamp, “Learning motion primitives automata for autonomous driving applications,” Math. Comput. Appl., vol. 27, no. 4, pp. 1–54, 2022.10.3390/mca27040054Search in Google Scholar
[17] P. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107, 1968. https://doi.org/10.1109/tssc.1968.300136.Search in Google Scholar
[18] M. Riesmeier, O. Schnabel, F. Woittennek, and T. Knüppel, “Zur folgeregelung mehrachsiger fahrzeuge,” Automatisierungstechnik, vol. 64, no. 8, pp. 602–617, 2016. https://doi.org/10.1515/auto-2016-0040.Search in Google Scholar
[19] M. Lukassek, J. Dahlmann, A. Völz, and K. Graichen, “Model predictive path-following control for a truck-trailer system with specific guidance points – a practical approach.” (Submitted to IFAC Mechatronics).Search in Google Scholar
[20] B. Li, et al.., “Trajectory planning for a tractor with multiple trailers in extremely narrow environments: a unified approach,” in Proceedings of the International Conference on Robotics and Automation (ICRA), 2019, pp. 8557–8562.10.1109/ICRA.2019.8793955Search in Google Scholar
[21] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved path planning by tightly combining lattice-based path planning and optimal control,” IEEE Trans. Intell. Veh., vol. 6, no. 1, pp. 57–66, 2021. https://doi.org/10.1109/tiv.2020.2991951.Search in Google Scholar
[22] K. Bergman and D. Axehill, “Combining homotopy methods and numerical optimal control to solve motion planning problems,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 347–354.10.1109/IVS.2018.8500644Search in Google Scholar
[23] T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC),” Opt. Eng., vol. 20, no. 3, pp. 770–809, 2019. https://doi.org/10.1007/s11081-018-9417-2.Search in Google Scholar
[24] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-following for constrained nonlinear systems,” in Proceedings of IEEE Conference on Decision and Control (CDC), 2009, pp. 8642–8647.10.1109/CDC.2009.5399744Search in Google Scholar
[25] M. Lukassek, A. Völz, T. Szabo, and K. Graichen, “Model predictive path-following control for general n-trailer systems with an arbitrary guidance point,” in Proceedings of IEEE European Control Conference (ECC), 2021, pp. 1329–1334.10.23919/ECC54610.2021.9654870Search in Google Scholar
[26] J. Dahlmann, A. Völz, T. Szabo, and K. Graichen, “Trajectory optimization for truck-trailer systems based on predictive path-following control,” in Proceedings of IEEE Conference on Control Technology and Applications, 2022, pp. 37–42.10.1109/CCTA49430.2022.9966073Search in Google Scholar
[27] J. Dahlmann, A. Völz, M. Lukassek, and K. Graichen, “Local predictive optimization of globally planned motions for truck-trailer systems,” IEEE Trans. Control Syst. Technol., pp. 1–14, 2024, (Early access), https://doi.org/10.1109/TCST.2023.3345169.Search in Google Scholar
[28] O. Ljungqvist, K. Bergman, and D. Axehill, “Optimization-based motion planning for multi-steered articulated vehicles,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15580–15587, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2403.Search in Google Scholar
[29] J. Dahlmann, A. Völz, and K. Graichen, “Global motion planning for multi-trailer vehicles in partially structured environments.” (In preparation).Search in Google Scholar
[30] M. M. Michałek, “Agile maneuvering with intelligent articulated vehicles: a control perspective,” in Proceedings of 10th IFAC Symposium on Intelligent Autonomous Vehicles (IAV), 2019, pp. 458–473.10.1016/j.ifacol.2019.08.092Search in Google Scholar
[31] L. Bushnell, B. Mirtich, A. Sahai, and M. Secor, “Off-tracking bounds for a car pulling trailers with kingpin hitching,” in Proceedings of IEEE Conference on Decision and Control (CDC), vol. 3, 1994, pp. 2944–2949.Search in Google Scholar
[32] K. Kant and S. Zucker, “Toward efficient trajectory planning: the path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–89, 1986. https://doi.org/10.1177/027836498600500304.Search in Google Scholar
[33] E. F. Camacho and C. Bordons, Model Predictive Control, 2nd ed. London, Springer, 2004.Search in Google Scholar
[34] T. Faulwasser, Optimization-based Solutions to Constrained Trajectory-Tracking and Path-Following Problems, Aachen, Shaker, 2013.Search in Google Scholar
[35] R. Knepper and A. Kelly, “High performance state lattice planning using heuristic look-up tables,” in Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006, pp. 3375–3380.10.1109/IROS.2006.282515Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston