Zusammenfassung
Kommunikationsbasierte Regler für Platooning sind oft für eine homogene Fahrzeugzusammensetzung in einer nominalen Fahrsituation ausgelegt. In realen Anwendungen werden Platoons jedoch aus unterschiedlichen Fahrzeugen bestehen und somit heterogen sein, was die Anforderungen an einen sicheren Betrieb erhöht. Darüber hinaus sind Regler, die für den nominalen Fahrzustand ausgelegt sind, nicht unbedingt in der Lage, externe Störungen zu bewältigen. In dieser Arbeit wird ein Konzept zum Wechsel der Kommunikationstopologie in Abhängigkeit von der aktuellen Fahrsituation in einem heterogenen Platoon vorgestellt. Angewandt wird das Konzept auf den kooperativen Nothalt. Für diese Situation wird gezeigt, wie eine geeignete Kommunikationstopologie gefunden werden kann und dass durch den Wechsel der Topologie Kollisionen innerhalb des Platoons vermieden werden können.
Abstract
Communication-based controllers for platooning are often designed for a homogeneous vehicle composition in a nominal driving situation. However, in real applications, platoons will consist of different vehicles and thus be heterogeneous, which increases the requirements for safe operation. In addition, controllers designed for the nominal driving situation are not necessarily capable of handling external disturbances. In this paper, a concept for changing the communication topology depending on the current driving situation in a heterogeneous platoon is presented. The concept is applied in cooperative emergency braking. For this situation it is shown how a suitable communication topology can be found and that collisions within the platoon can be avoided by changing the topology.
Über die Autoren
Fritz Miekautsch ist wissenschaftlicher Mitarbeiter am Institut für Automatisierungstechnik in der Fakultät für Maschinenbau der Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg. Sein Forschungsgebiet ist der Entwurf von Architekturen und Methoden für vernetze Systeme im Kontext automatisierter Konvois.
Alexander Fay ist Professor für Automatisierungstechnik in der Fakultät für Maschinenbau der Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg. Sein Hauptinteresse gilt Beschreibungsmitteln, Methoden und Werkzeugen für ein effizientes Engineering komplexer Automatisierungssysteme.
Literatur
1. Shladover, S.E., C.A. Desoer, J.K. Hedrick, M. Tomizuka, J. Walrand, W.-B. Zhang, D.H. McMahon, H. Peng, S. Sheikholeslam and N. McKeown. 1991. Automated vehicle control developments in the path program. In: IEEE Transactions on Vehicular Technology, volume 40, pp. 114–130.10.1109/25.69979Search in Google Scholar
2. Swaroop, D., J.K. Hedrick and S.B. Choi. 2001. Direct adaptive longitudinal control of vehicle platoons. In: IEEE Transactions on Vehicular Technology, volume 50, pp. 150–161.10.1109/25.917908Search in Google Scholar
3. Ploeg, J., B.T.M. Scheepers, E. van Nunen, N. van de Wouw and H. Nijmeijer. 2011. Design and experimental evaluation of cooperative adaptive cruise control. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 260–265.10.1109/ITSC.2011.6082981Search in Google Scholar
4. Segata, M. 2016. Safe and efficient communication protocols for platooning control. PhD Thesis.Search in Google Scholar
5. Seeland, F., F. Miekautsch, A. Fay and J. Horn. 2020. Mitigation and evasion of negative effects of nonhomogeneous vehicle dynamics in platooning applications. In: 2020 European Control Conference (ECC), pp. 166–171.10.23919/ECC51009.2020.9143916Search in Google Scholar
6. Manfredi, S., A. Petrillo and S. Santini. 2020. Distributed PI control for heterogeneous nonlinear platoon of autonomous connected vehicles. In: 21st IFAC World Congress, 2020, July 12–17, 2020, Berlin, Germany.Search in Google Scholar
7. Lefeber, E., J. Ploeg and H. Nijmeijer. 2020. Cooperative adaptive cruise control of heterogeneous vehicle platoons. In: 21st IFAC World Congress, 2020, July 12–17, 2020, Berlin, Germany.Search in Google Scholar
8. Miekautsch, F., F. Seeland, J. Horn and A. Fay. 2021. Situation-aware switching of the communication topology in heterogeneous platooning applications. In: The 16th IFAC Symposium on Control in Transportation Systems (CTS21).10.1016/j.ifacol.2021.06.053Search in Google Scholar
9. Santini, S., A. Salvi, A.S. Valente, A. Pescapé, M. Segata and R. Lo Cigno. 2017. A consensus-based approach for platooning with intervehicular communications and its validation in realistic scenarios. IEEE Trans. Veh. Technol. 66(3): 1985–1999.10.1109/TVT.2016.2585018Search in Google Scholar
10. Zheng, Y., S.E. Li, J. Wang, L.Y. Wang and K. Li. 2014. Influence of information flow topology on closed-loop stability of vehicle platoon with rigid formation. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 2094–2100.10.1109/ITSC.2014.6958012Search in Google Scholar
11. Zheng, Y., S.E. Li, K. Li and L.-Y. Wang. 2016. Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control. IEEE Trans. Control Syst. Technol. 24(4): 1253–1265.10.1109/TCST.2015.2483564Search in Google Scholar
12. Zheng, Y., S.E. Li, K. Li and R. Wei. 2018. Platooning of connected vehicles with undirected topologies: Robustness analysis and distributed H-infinity control. IEEE Trans. Intell. Transp. Syst. 19(5): 1353–1364.10.1109/TITS.2017.2726038Search in Google Scholar
13. Li, S.E., X. Qin, Y. Zheng, J. Wang, K. Li and H. Zhang. 2019. Distributed platoon control under topologies with complex eigenvalues: Stability analysis and controller synthesis. IEEE Trans. Control Syst. Technol. 27(1): 206–220.10.1109/TCST.2017.2768041Search in Google Scholar
14. Lunze, J. 2020. Design of the communication structure of cooperative adaptive cruise controllers. IEEE Trans. Intell. Transp. Syst. 21(10): 4378–4387, 10.1109/TITS.2019.2941080.Search in Google Scholar
15. Seeland, F., F. Miekautsch, A. Fay and J. Horn. 2021. Inherent effects of homogenization in non-homogeneous vehicle platoons. In: The 16th IFAC Symposium on Control in Transportation Systems (CTS21).10.1016/j.ifacol.2021.06.036Search in Google Scholar
16. Salvi, A., S. Santini and A.S. Valente. 2017. Design, analysis and performance evaluation of a third order distributed protocol for platooning in the presence of time-varying delays and switching topologies. Transp. Res., Part C, Emerg. Technol. 80: 360–383, ISSN 0968-090X.10.1016/j.trc.2017.04.013Search in Google Scholar
17. Li, K., Y. Bian, S.E. Li, B. Xu and J. Wang. 2020. Distributed model predictive control of multi-vehicle systems with switching communication topologies. Transp. Res., Part C, Emerg. Technol. 118: 102717, ISSN 0968-090X.10.1016/j.trc.2020.102717Search in Google Scholar
18. Lunze, J. 2019. Networked control of multi-agent systems. Bookmundo, Rotterdam.Search in Google Scholar
19. Murthy, D.K. and A. Masrur. 2016. Braking in close following platoons: The law of the weakest. In: 2016 Euromicro Conference on Digital System Design (DSD), pp. 613–620.10.1109/DSD.2016.78Search in Google Scholar
20. Bergenhem, C., K. Meinke and F. Ström. 2018. Quantitative safety analysis of a coordinated emergency brake protocol for vehicle platoons. In: Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems, pp. 386–404.10.1007/978-3-030-03424-5_26Search in Google Scholar
21. Hasan S., A. Balador, S. Girs and E. Uhlemann. 2019. Towards emergency braking as a fail-safe state in platooning: A simulative approach. In: 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–5.10.1109/VTCFall.2019.8891254Search in Google Scholar
22. Ploeg, J. and R. de Haan. 2019. Cooperative automated driving: From platooning to maneuvering. In: Proceedings ofthe 5th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2019), pp. 5–10.Search in Google Scholar
23. Li, S.E., Y. Zheng, K. Li and J. Wang. 2015. An overview of vehicular platoon control under the four-component framework. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 286–291, ISBN 1931-0587.10.1109/IVS.2015.7225700Search in Google Scholar
24. Shaw, E. and J.K. Hedrick. 2007. String stability analysis for heterogeneous vehicle strings. In: 2007 American Control Conference, pp. 3118–3125, ISBN 2378-5861.10.1109/ACC.2007.4282789Search in Google Scholar
25. Zheng, Y., Y. Bian, S. Li and S.E. Li 2021. Cooperative control of heterogeneous connected vehicles with directed acyclic interactions. IEEE Intell. Transp. Syst. Mag., 13(2): 127–141.10.1109/MITS.2018.2889654Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston