Zusammenfassung
In diesem Beitrag wird eine Methode zum Entwurf von Testsignalen für die Identifikation lokal-affiner dynamischer Takagi-Sugeno-SISO-Modelle vorgestellt. Diese Methode verwendet ein erstes identifiziertes Prozessmodell und nutzt so erlangtes Wissen über die Modellstruktur mittels modellprädiktiver Regelung aus, um einen Testsignalentwurf durchzuführen. Im Rahmen einer Fallstudie wird die Methode demonstriert.
Abstract
In this contribution a test signal design method for the identification of Takagi-Sugeno SISO models is presented. This method uses an initial process model and exploits knowledge about the model structure by using model predictive control. The method is demonstrated in a case study.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: KR 3795/7-1
Funding statement: Die Forschungsarbeit wurde durch die Deutsche Forschungsgemeinschaft (DFG) unterstützt, Projektnummer KR 3795/7-1.
Über die Autoren
Dipl.-Ing. Matthias Himmelsbach war wissenschaftlicher Mitarbeiter am Fachgebiet Mess- und Regelungstechnik der Universität Kassel. Sein Forschungsschwerpunkt war der Testsignalentwurf für die nichtlineare Systemidentifikation.
Univ.-Prof. Dr.-Ing. Andreas Kroll ist Leiter des Fachgebiets Mess- und Regelungstechnik der Universität Kassel. Seine Forschungsschwerpunkte sind nichtlineare Identifikations- und Regelungsmethoden, Computational Intelligence, Fernmesstechnik und Sensordatenfusion.
Danksagung
Es wird Herrn M. Sc. Frederik Bendt für seinen Beitrag (Wegbasierter Testsignalentwurf für die Identifikation lokal-affiner dynamischer TS-Modelle durch Applikation nichtlinearer MPCs unter Ausnutzung der lokalen Modellstruktur) gedankt. Es wird den Gutachtern für die Anmerkungen und Anregungen gedankt.
Literatur
1. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-15, Nr. 1, S. 116–132, 1985.10.1016/B978-1-4832-1450-4.50045-6Search in Google Scholar
2. H. Ying, “Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent,” IEEE Trans. Systems, Man, Cybernetics – Part A, Vol. 28, Nr. 4, S. 515–520, 1998.10.1109/3468.686713Search in Google Scholar
3. A. Kroll and A. Dürrbaum, “On joint optimal experiment design for identifying partition and local model parameters of Takagi-Sugeno models,” in Proc. IFAC Symposium on System Identification, Beijing, China, 2015, S. 1427–1432.10.1016/j.ifacol.2015.12.333Search in Google Scholar
4. R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, 2. Aufl. New Jersey: Wiley, 2012.10.1002/9781118287422Search in Google Scholar
5. K. Godfrey, Perturbation Signals for System Identification. Prentice Hall, 1993.Search in Google Scholar
6. M. Gringard and A. Kroll, “Zur Homogenisierung von Testsignalen für die nichtlineare Systemidentifikation,” at - Automatisierungstechnik, Vol. 67, Nr. 10, S. 820–832, 2019.10.1515/auto-2019-0041Search in Google Scholar
7. T. Heinz and O. Nelles, “Vergleich von Anregungssignalen für nichtlineare Identifikationsaufgaben,” in Proc. 26. Workshop Computational Intelligence, Dortmund, 2016, S. 139–158.Search in Google Scholar
8. L. Prozato, “Optimal experiment design and some related control problems,” Automatica, Vol. 44, Nr. 2, S. 303–325, 2008.10.1016/j.automatica.2007.05.016Search in Google Scholar
9. C. Hametner, M. Stadlbauer, M. Deregnaucourt, S. Jakubek and T. Winsel, “Optimal experiment design based on local model networks and multiplayer perceptron networks,” Engineering Applications of Artificial Intelligence, Vol. 26, Nr. 1, S. 251–261, 2013.10.1016/j.engappai.2012.05.016Search in Google Scholar
10. M. Gringard and A. Kroll, “Optimal experiment design for identifying dynamical Takagi-Sugeno models with minimal parameter uncertainty,” in Proc. Symposium on System Identification 2018, Stockholm, Schweden, 2018.10.1016/j.ifacol.2018.09.163Search in Google Scholar
11. K. Fang and A. T. Shenton, “Constrained optimal test signal design for improved prediction error,” IEEE Transactions on Automation Science and Engineering, Vol. 11, Nr. 4, S. 1191–1202, 2014.10.1109/TASE.2013.2264810Search in Google Scholar
12. A. Atkinson and A. Donev, Optimum Experimental Designs. Oxford: Clarendon Press, 1992.Search in Google Scholar
13. H. Bandemer and A. Bellmann, Statistische Versuchsplanung, 4. Aufl. Stuttgart: Teubner, 1994.Search in Google Scholar
14. V. Fedorov, Theory of Optimal Experiments. New York: Academic Press, 1972.Search in Google Scholar
15. Š. Kozák, “State-of-the-art in control engineering,” Journal of Electrical Systems and Information Technology, Vol. 1, Nr. 1, S. 1–9, 2014.10.1016/j.jesit.2014.03.002Search in Google Scholar
16. L. Grüne and J. Pannek, Nonlinear Model Predictive Control. London: Springer, 2011.10.1007/978-0-85729-501-9Search in Google Scholar
17. J. B. Rawlings, D. Q. Mayne and M. M. Diehl, Model Predictive Control: Theory, Computation, and Design, 2. Aufl. Nob Hill Publishing, 2020.Search in Google Scholar
18. M. Faroni, M. Beschi, M. Berenguel and A. Visioli, “Fast MPC with staircase parametrization of the inputs: Continuous input blocking,” in 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Zypern, 2017.10.1109/ETFA.2017.8247632Search in Google Scholar
19. J. Roubos, S. Mollov, R. Babuška and H. Verbruggen, “Fuzzy model-based predictive control using Takagi–Sugeno models,” International Journal of Approximate Reasoning, Vol. 22, Nr. 1-2, S. 3–30, 1999.10.1016/S0888-613X(99)00020-1Search in Google Scholar
20. X. Feng and R. Patton, “Active fault tolerant control of a wind turbine via fuzzy MPC and moving horizon estimation,” IFAC Proceedings Volumes, Vol. 47, Nr. 3, S. 3633–3638, 2014.10.3182/20140824-6-ZA-1003.00965Search in Google Scholar
21. Y.-L. Kuo and I. E. Citra Resmi, “Model predictive control based on a Takagi-Sugeno fuzzy model for nonlinear systems,” International Journal of Fuzzy Systems, Vol. 21, Nr. 2, S. 556–570, 2019.10.1007/s40815-018-0574-4Search in Google Scholar
22. Y. L. Huang, H. H. Lou, J. P. Gong and T. F. Edgar, “Fuzzy model predictive control,” IEEE Transactions on Fuzzy Systems, Vol. 8, Nr. 6, S. 665–678, 2000.10.1109/91.890326Search in Google Scholar
23. C. A. Larsson, M. Annergren, H. Hjalmarsson, C. R. Rojas, X. Bombois, A. Mesbah and P. E. Moden, “Model predictive control with integrated experiment design for output error systems,” in Proc. 2013 European Control Conference (ECC), Zürich, Schweiz, 2013.Search in Google Scholar
24. F. Jost, S. Sager and T. T.-T. Le, “A feedback optimal control algorithm with optimal measurement time points, ” 2020. [Online]. Available: http://dx.doi.org/10.25673/34933.Search in Google Scholar
25. J. Qian, M. Nadri and P. Dufour, “Optimal input design for parameter estimation of nonlinear systems: case study of an unstable delta wing,” International Journal of Control, Vol. 90, S. 1–15, 2016.10.1080/00207179.2016.1225990Search in Google Scholar
26. B. Restrepo, D. Tucker and L. E. David, “Recursive system identification and simulation of model predictive control based on experimental data to control the cathode side parameters of the hybrid fuel cell/gas turbine,” Journal of Electrochemical Energy Conversion and Storage, Vol. 14, Nr. 3, 2017.10.1115/1.4036944Search in Google Scholar
27. S. Juhász, C. Legány and A. Babos, “Cluster validity measurement techniques,” in Proc. International Conference of Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spanien, 2006, S. 388–393.Search in Google Scholar
28. M. Kahl, A. Kroll, R. Kästner and M. Sofsky, “Application of model selection methods for the identification of a dynamic boost pressure model,” in Proc. 17th IFAC Symposium on System Identification (SysID), Beijing, China, 2015, S. 829–834.10.1016/j.ifacol.2015.12.232Search in Google Scholar
29. A. Kroll, “On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions,” Journal of Artificial Intelligence and Soft Computing Research, Vol. 1, Nr. 4, S. 283–300, 2011.Search in Google Scholar
30. M. Granzotto, R. Postoyan, L. Buşoniu, D. Nešić and J. Daafouz, “Finite-horizon discounted optimal control: stability and performance,” IEEE Transactions on Automatic Control, Vol. 66, Nr. 2, S. 550–565, 2021.10.1109/TAC.2020.2985904Search in Google Scholar
31. M. Gringard and A. Kroll, “On considering the output in space-filling test signal designs for the identification of dynamic Takagi-Sugeno models,” in Proc. 21st IFAC World Congress, Berlin, S. 1222–1227, 2020.Search in Google Scholar
32. A. Kroll, T. Bernd and S. Trott, “Fuzzy network model-based fuzzy state controller design,” IEEE Transactions on Fuzzy Systems, Vol. 8, S. 632–644, 2000.10.1109/91.873586Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston