Abstract
The network-induced time-delay caused by the introduction of the communication network in a networked control system has a great negative impact on the stability and performance of the system. In order to compensate for the performance degradation of the networked control system caused by time-delay, a time-delay compensation method based on PI-based dynamic matrix control for networked control system is proposed. In this study, autoregressive integrated moving average model is used to predict the future time-delay. The predictive time-delay replaces the actual time-delay as a parameter of the controller. In order to improve the compensation effect of dynamic matrix control, the feedback structure of the PI control and the predictive ability of dynamic matrix control are combined. The new objective function of dynamic matrix control is combined with PI structure to obtain the optimal control increment value. The PI controller can correct the output of dynamic matrix control and reduce the deviation between the actual output and the predicted output. The effect of the model mismatch and interference on the system is reduced. The robustness and anti-interference performance of the system is improved. The controller can select the appropriate control value to transmit to the actuator to compensate for the effect of the random time-delay in the networked control system. The stability of the compensation method is proved. Through the simulation results, the effectiveness of the proposed time-delay compensation method is verified.
Zusammenfassung
In vernetzten Steuerungssystemen hat die durch die Einführung des Kommunikationsnetzwerks verursachte Verzögerung einen großen negativen Einfluss auf die Stabilität und Leistung des Systems. Um den Einfluss der Zeitverzögerung auf die Leistung des vernetzten Steuerungssystems zu kompensieren, wird ein Zeitverzögerungskompensationsverfahren vorgeschlagen, das auf der dynamischen PI-Matrixsteuerung basiert. Ein autoregressives integriertes Modell mit gleitendem Durchschnitt wird verwendet, um die zukünftige Verzögerung vorherzusagen, und die vorhergesagte Verzögerung ersetzt die tatsächliche Verzögerung als Reglerparameter. Um den Kompensationseffekt der dynamischen Matrixsteuerung zu verbessern, wird die Rückkopplungsstruktur der PI-Steuerung mit der Vorhersagefähigkeit der dynamischen Matrixsteuerung kombiniert. Die Zielfunktion der Dynamic Matrix Control wird mit der PI-Struktur kombiniert, um das optimale Steuerungsinkrement zu erhalten. Der PI-Regler kann die Ausgabe der dynamischen Matrixsteuerung korrigieren, die Abweichung zwischen der tatsächlichen Ausgabe und der vorhergesagten Ausgabe verringern, den Einfluss von Modellfehlanpassungen und Interferenzen auf das System verringern und die Robustheit und die Anti-Interferenz-Leistung des Systems verbessern. Der Kompensationsregler kann eine geeignete Steuergröße auswählen und an den Aktuator weiterleiten, um den Einfluss einer zufälligen Zeitverzögerung im vernetzten Steuerungssystem zu kompensieren. Die Stabilität der Kompensationsmethode wird im Beitrag nachgewiesen. Die Simulationsergebnisse bestätigen die Wirksamkeit der vorgeschlagenen Verzögerungskompensationsmethode.
About the author
Zhongda Tian received the Ph. D. degree in control theory and control engineering from Northeastern University, China in 2013. He is currently an associate professor in School of Artificial Intelligence, Shenyang University of Technology, China. His research interests include networked control systems, time series prediction and predictive control of complex industrial systems.
References
1. X. M. Zhang, Q. L. Han, X. H. Ge, D. R. Ding, L. Ding, D. Yue and C. Peng, “Networked control systems: a survey of trends and techniques”, IEEE/CAA Journal of Automatica Sinica, 7, no. 1, 1–17, 2020.10.1109/JAS.2019.1911651Search in Google Scholar
2. M. Li and Y. Chen, “Challenging research for networked control systems: A survey”, Transactions of the Institute of Measurement and Control, 41, no. 9, 2400–2418, 2019.10.1177/0142331218799818Search in Google Scholar
3. J. S. Song and X. H. Chang, “H-infinity controller design of networked control systems with a new quantization structure”, Applied Mathematics and Computation, 376, 125070, 2020.10.1016/j.amc.2020.125070Search in Google Scholar
4. Z. D. Tian, S. J. Li and Y. H. Wang, “Predictive control compensation strategy for time delay in networked control systems”, Journal of Computers (Taiwan), 29, no. 4, 96–109, 2018.Search in Google Scholar
5. X. M. Qi, C. J. Zhang and J. Gu, “Robust fault detection filter for non-linear state-delay networked control system”, International Journal of Automation and Control, 6, no. 3-4, 215–230, 2012.10.1504/IJAAC.2012.051881Search in Google Scholar
6. Y. Shi, J. Huang and B. Yu, “Robust tracking control of networked control systems: Application to a networked DC motor”, IEEE Transactions on Industrial Electronics, 60, no. 12, 5864–5874, 2013.10.1109/TIE.2012.2233692Search in Google Scholar
7. F. X. Xu, Y. Cheng, H. L. Ren and S. L. Wang, “Research on adaptive neural network control system based on nonlinear U-model with time-varying delay”, Mathematical Problems in Engineering, 2014, 420713, 2014.10.1155/2014/420713Search in Google Scholar
8. C. W. Han, “Fuzzy neural network-based time delay prediction for networked control systems”, Applied Mathematics & Information Sciences, 8, no. 1, 407–413, 2014.10.12785/amis/080151Search in Google Scholar
9. J. B. Hu, H. T. Zhang and G. F. Wu, “Simulation design of controller for networked control system”, International Journal of Control and Automation, 9, no. 1, 123–132, 2016.10.14257/ijca.2016.9.1.12Search in Google Scholar
10. J. H. Zhang, P. Shi and Y. Q. Xia, “Fuzzy delay compensation control for T-S fuzzy systems over network”, IEEE Transactions on Cybernetics, 43, no. 1, 259–268, 2013.10.1109/TSMCB.2012.2204744Search in Google Scholar PubMed
11. F. Han, G. Feng, Y. Wang, J. B. Qiu and C. Z. Zhang, “A novel dropout compensation scheme for control of networked T-S fuzzy dynamic systems”, Fuzzy Sets and Systems, 235, 44–61, 2014.10.1016/j.fss.2013.05.011Search in Google Scholar
12. I. Pan, S. Das and A. Gupta, “Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay”, ISA Transactions, 50, no. 1, 28–36, 2011.10.1016/j.isatra.2010.10.005Search in Google Scholar PubMed
13. Z. D. Tian, X. W. Gao, B. L. Gong and T. Shi, “Time-delay compensation method for networked control system based on time-delay prediction and implicit PIGPC”, International Journal of Automation and Computing, 12, no. 6, 648–656, 2015.10.1007/s11633-015-0897-7Search in Google Scholar
14. Z. D. Tian, S. J. Li, Y. H. Wang and Q. Zhang, “Networked control system time-delay compensation based on time-delay prediction and improved implicit GPC”, Algorithms, 8, no. 1, 3–18, 2015.10.3390/a8010003Search in Google Scholar
15. Z. P. Chen, E. Z. Dong and C. Jia, “Networked control systems based on dynamic matrix control”, In: Proceedings – 2009 2nd Conference on Human System Interactions, pp. 87–91, 2009.10.1109/HSI.2009.5090959Search in Google Scholar
16. Y. Ge, J. C. Wang and C. Li, “Robust stability conditions for DMC controller with uncertain time delay”, International Journal of Control, Automation and Systems, 12, no. 2, 241–250, 2014.10.1007/s12555-012-0377-6Search in Google Scholar
17. Q. Z. Zhang, Y. C. Tang and W. D. Zhang, “Adaptive dynamic matrix control for network-based control systems with random delays”, Asian Journal of Control, 8. no. 6, 45–49, 2006.10.1111/j.1934-6093.2006.tb00250.xSearch in Google Scholar
18. Z. D. Tian, S. J. Li, Y. H. Wang and X. D. Wang, “Scheduling method for networked control system with resource constraints based on fuzzy feedback priority and variable sampling period”, Transactions of the Institute of Measurement and Control, 40, no. 4, 1136–1149, 2018.10.1177/0142331216677574Search in Google Scholar
19. M. L. Ma and Z. Z. Wang, “Prediction of the energy consumption variation trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models”, Energies, 13, no. 1, 10, 2020.10.3390/en13010010Search in Google Scholar
20. O. Aljarrah, J. Li, W. Z. Huang, A. Heryudono and J. Bi, “ARIMA-GMDH: a low-order integrated approach for predicting and optimizing the additive manufacturing process parameters”, International Journal of Advanced Manufacturing Technology, 106, no. 1-2, 701–717, 2020.10.1007/s00170-019-04315-8Search in Google Scholar
21. U. C. Buyuksahin and S. Ertekina, “Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition”, Neurocomputing, 361, 151–163, 2019.10.1016/j.neucom.2019.05.099Search in Google Scholar
22. T. Lee, E. Han, U. C. Moon and K. Y. Lee, “Supplementary control of air-fuel ratio using dynamic matrix control for thermal power plant emission”, Energies, 13, no. 1, 226, 2020.10.3390/en13010226Search in Google Scholar
23. K. A. Naik, C. P. Gupta and E. Fernandez, “Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system”, International Journal of Electrical Power & Energy Systems, 115, 105468, 2020.10.1016/j.ijepes.2019.105468Search in Google Scholar
24. D. W. Kun and I. Hwang, “Linear matrix inequality-based nonlinear adaptive robust control of Quadrotor”, Journal of Guidance Control & Dynamics, 39, no. 5, 996–1008, 2016.10.2514/1.G001439Search in Google Scholar
25. Z. D. Tian, S. J. Li, Y. H. Wang and B. Gu, “Priority scheduling of networked control system based on fuzzy controller with self-tuning scale factor”, IAENG International Journal of Computer Science, 44, no. 3, 308–315, 2017.Search in Google Scholar
26. X. R. Wang, M. Tao and Y. X. Jia, “Study on PID parameters turning method based on simulink”, In: International Conference on Mechatronics Engineering and Computing Technology, pp. 556–562, 2014.10.4028/www.scientific.net/AMM.556-562.2532Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston