Abstract
We consider standard tracking-type, distributed elliptic optimal control problems with
Acknowledgements
The authors would like to acknowledge the computing support of the supercomputer MACH-2 (https://www3.risc.jku.at/projects/mach2/) from Johannes Kepler Universität Linz and of the high performance computing cluster Radon1 (https://www.oeaw.ac.at/ricam/hpc) from Johann Radon Institute for Computational and Applied Mathematics (RICAM) on which the numerical examples are performed.
References
[1] O. Axelsson, M. Neytcheva and A. Ström, An efficient preconditioning method for state box-constrained optimal control problems, J. Numer. Math. 26 (2018), no. 4, 185–207. 10.1515/jnma-2017-0047Search in Google Scholar
[2] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1–137. 10.1017/S0962492904000212Search in Google Scholar
[3] A. Borzi and V. Schulz, Multigrid methods for PDE optimization, SIAM Rev. 51 (2009), no. 2, 361–395. 10.1137/060671590Search in Google Scholar
[4] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp. 50 (1988), no. 181, 1–17. 10.1090/S0025-5718-1988-0917816-8Search in Google Scholar
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2008. 10.1007/978-0-387-75934-0Search in Google Scholar
[6] H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numer. Math. Sci. Comput., Oxford University, New York, 2005. 10.1093/oso/9780198528678.001.0001Search in Google Scholar
[7] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. 10.1007/978-1-4757-4355-5Search in Google Scholar
[8] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996. Search in Google Scholar
[9] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Appl. Math. Sci. 95, Springer, Cham, 2016. 10.1007/978-3-319-28483-5Search in Google Scholar
[10] M. Jung and U. Langer, Applications of multilevel methods to practical problems, Surveys Math. Indust. 1 (1991), no. 3, 217–257. Search in Google Scholar
[11] M. Jung, U. Langer, A. Meyer, W. Queck and M. Schneider, Multigrid preconditioners and their applications, Third Multigrid Seminar (Biesenthal 1988), Rep. MATH 89, Karl-Weierstrass-Institut, Berlin (1989), 11–52. Search in Google Scholar
[12] J. Kraus and M. Wolfmayr, On the robustness and optimality of algebraic multilevel methods for reaction-diffusion type problems, Comput. Vis. Sci. 16 (2013), no. 1, 15–32. 10.1007/s00791-014-0221-zSearch in Google Scholar
[13] U. Langer, O. Steinbach and H. Yang, Robust discretization and solvers for elliptic optimal control problems with energy regularization, Comput. Methods Appl. Math. 22 (2022), no. 1, 97–111. 10.1515/cmam-2021-0169Search in Google Scholar
[14] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Grundlehren Math. Wiss. 170, Springer, New York, 1971. 10.1007/978-3-642-65024-6Search in Google Scholar
[15] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl. 18 (2011), no. 1, 1–40. 10.1002/nla.716Search in Google Scholar
[16] F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal. 18 (1984), no. 1–2, 29–37. 10.1080/00036818408839508Search in Google Scholar
[17] M. Neumüller and O. Steinbach, Regularization error estimates for distributed control problems in energy spaces, Math. Methods Appl. Sci. 44 (2021), no. 5, 4176–4191. 10.1002/mma.7021Search in Google Scholar
[18] Y. Notay, A new analysis of block preconditioners for saddle point problems, SIAM J. Matrix Anal. Appl. 35 (2014), no. 1, 143–173. 10.1137/130911962Search in Google Scholar
[19] Y. Notay, Convergence of some iterative methods for symmetric saddle point linear systems, SIAM J. Matrix Anal. Appl. 40 (2019), no. 1, 122–146. 10.1137/18M1208836Search in Google Scholar
[20] M. A. Olshanskii and A. Reusken, On the convergence of a multigrid method for linear reaction-diffusion problems, Computing 65 (2000), no. 3, 193–202. 10.1007/s006070070006Search in Google Scholar
[21] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975), no. 4, 617–629. 10.1137/0712047Search in Google Scholar
[22] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl. 19 (2012), no. 5, 816–829. 10.1002/nla.814Search in Google Scholar
[23] T. Rees and M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl. 17 (2010), no. 6, 977–996. 10.1002/nla.693Search in Google Scholar
[24] J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl. 29 (2007), no. 3, 752–773. 10.1137/060660977Search in Google Scholar
[25] V. Schulz and G. Wittum, Transforming smoothers for PDE constrained optimization problems, Comput. Vis. Sci. 11 (2008), no. 4–6, 207–219. 10.1007/s00791-008-0094-0Search in Google Scholar
[26] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer, New York, 2008. 10.1007/978-0-387-68805-3Search in Google Scholar
[27] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math. 25, Springer, Berlin, 1997. 10.1007/978-3-662-03359-3Search in Google Scholar
[28] F. Tröltzsch, Optimal Control of Partial Differential Equations, Grad. Stud. Math. 112, American Mathematical Society, Providence, 2010. 10.1090/gsm/112/07Search in Google Scholar
[29] W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach, Math. Comp. 71 (2002), no. 238, 479–505. 10.1090/S0025-5718-01-01324-2Search in Google Scholar
[30] W. Zulehner, Nonstandard norms and robust estimates for saddle point problems, SIAM J. Matrix Anal. Appl. 32 (2011), no. 2, 536–560. 10.1137/100814767Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston