Abstract
Galactofuranose metabolism is valued as an important target for the development of new antituberculosis drugs. UDP-galactopyranose mutase, a central enzyme in galactofuranose biosynthesis, is essential for the growth and viability of mycobacteria. This enzyme catalyzes the conversion of UDP-galactopyranose into UDP-galactofuranose, the donor used by various galacto-furanosyltransferases. While D-galactofuranose residues are often found in important surface glycoconjugates of pathogenic bacteria, fungi and protozoan parasites, they are absent in the mammalian host, and thus their biosynthesis is an attractive target for the development of novel therapeutic strategies. In contrast to mycobacteria, the importance of galactofuranose for eukaryotic pathogens has not been ascertained because the enzymes involved in galactofuranose metabolism are unknown. Here, we report the identification and characterization of the first eukaryotic UDP-galactopyranose mutases. The genes encoding the enzymes were cloned from two different human pathogens: the parasite Leishmania major and the opportunistic fungus Aspergillus fumigatus. The newly identified eukaryotic enzymes exhibit 51% sequence identity, but are less than 20% identical to the prokaryotic counterparts. The sequence identity between pro- and eukaryotic enzymes is concentrated at amino acid residues that are involved in substrate and cofactor binding. Therefore, an inhibitor of UDP-galactopyranose mutase might be effective against a wide range of pathogenic organisms.
References
Barlow, J.N., Girvin, M.E., and Blanchard J.S. (1999). Positional isotope exchange catalyzed by UDP-galactopyranose mutase. J. Am. Chem. Soc.121, 6968–6969.10.1021/ja991582rSearch in Google Scholar
Dym, O. and Eisenberg, D. (2001). Sequence-structure analysis of FAD-containing proteins. Protein Sci.10, 1712–1728.10.1110/ps.12801Search in Google Scholar
Fullerton, S.W., Daff, S., Sanders, D.A., Ingledew, W.J., Whitfield, C., Chapman, S.K., and Naismith, J.H. (2003). Potentiometric analysis of UDP-galactopyranose mutase: stabilization of the flavosemiquinone by substrate. Biochemistry42, 2104–2109.10.1021/bi027077fSearch in Google Scholar
Guan, S., Clarke, A.J., and Whitfield C. (2001). Functional analysis of the galactosyltransferases required for biosynthesis of d-galactan I, a component of the lipopolysaccharide O1 antigen of Klebsiella pneumoniae. J. Bacteriol.183, 3318–3327.10.1128/JB.183.11.3318-3327.2001Search in Google Scholar
Hitchcock, P.J. and Brown, T.M. (1983). Morphological heterogeneity among Salmonella lipopolysaccharide chemo-types in silver-stained polyacrylamide gels. J. Bacteriol.154, 269–277.10.1128/jb.154.1.269-277.1983Search in Google Scholar
Huang, C. and Turco, S.J. (1993). Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani. J. Biol. Chem.268, 24060–24066.10.1016/S0021-9258(20)80492-XSearch in Google Scholar
Ilg, T. (2000). Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J.19, 1953–1962.10.1093/emboj/19.9.1953Search in Google Scholar PubMed PubMed Central
Köplin, R., Brisson, J.R., and Whitfield, C. (1997). UDP-galactofuranose precursor required for formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype O1 is synthesized by the product of the rfbDKPO1 gene. J. Biol. Chem.272, 4121–4128.10.1074/jbc.272.7.4121Search in Google Scholar PubMed
Kremer, L., Dover, L.G., Morehouse, C., Hitchin, P., Everett, M., and Morris, H.R. (2001). Galactan biosynthesis in Mycobacterium tuberculosis. Identification of a bifunctional UDP-galactofuranosyltransferase. J. Biol. Chem.276, 26430–26440.10.1074/jbc.M102022200Search in Google Scholar PubMed
Latgé, J.P., Kobayashi, H., Debeaupuis, J.P., Diaquin, M., Sarfati, J., Wieruszeski, J.M., Parra, E., Bouchara, J.P., and Fournet, B. (1994). Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect. Immun.62, 5424–5433.10.1128/iai.62.12.5424-5433.1994Search in Google Scholar PubMed PubMed Central
Lederkremer, R.M., Lima, C., Ramirez, M.I., Ferguson, M.A.J., Homans, S.W., and Thomas-Oates, J.E. (1991). Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J. Biol. Chem.266, 23670–23675.10.1016/S0021-9258(18)54336-2Search in Google Scholar
Leitao, E.A., Bittencourt, V.C., Haido, R.M., Valente, A.P., Peter-Katalinic, J., Letzel, M., de Souza, L.M., and Barreto-Bergter, E. (2003). β-Galactofuranose-containing O-linked oligosaccharides present in the cell wall peptidogalactomannan of Aspergillus fumigatus contain immunodominant epitopes. Glycobiology13, 681–692.10.1093/glycob/cwg089Search in Google Scholar
McConville, M.J. and Ferguson, M.A.J. (1993). The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J.294, 305–324.10.1042/bj2940305Search in Google Scholar
McConville, M.J., Homans, S.W., Thomas-Oates, J.E., Dell, A., and Bacic, A. (1990). Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J. Biol. Chem.265, 7385–7394.Search in Google Scholar
Nassau, P.M., Martin, S.L., Brown, R.E., Weston, A., Monsey, D., McNeil, M.R., and Duncan, K. (1996). Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning of UDP-galactopyranose mutase. J. Bacteriol.178, 1047–1052.10.1128/jb.178.4.1047-1052.1996Search in Google Scholar
Pan, F., Jackson, M., Ma, Y., and McNeil, M. (2001). Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol.183, 3991–3998 (erratum published in J. Bacteriol. 183, 6971).Search in Google Scholar
Pedersen, L.L. and Turco, S.J. (2003). Galactofuranose metabolism: a potential target for antimicrobial chemotherapy. Cell Mol. Life Sci.60, 259–266.Search in Google Scholar
Previato, J.O., Gorin, P.A.J., Mazurek, M., Xavier, M.T., Fournet, B., Wieruszeski, J.M., and Medonca-Previato, L. (1990). Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J. Biol. Chem.265, 2518–2526.10.1016/S0021-9258(19)39831-XSearch in Google Scholar
Previato, J.O., Wait, R., Jones, C., DosReis, G.A., Todeschini, A.R., Heise, N., and Previato, L.M. (2004). Glycoinositolphospholipid from Trypanosoma cruzi: structure, biosynthesis and immunobiology. Adv. Parasitol.56, 1–41.Search in Google Scholar
Sacks, D.L., Modi, G., Rowton, E., Späth, G., Epstein, L., Turco, S.J., and Beverley, S.M. (2000). The role of phosphoglycans in Leishmania-sand fly interactions. Proc. Natl. Acad. Sci. USA97, 406–411.10.1073/pnas.97.1.406Search in Google Scholar PubMed PubMed Central
Sanders, D.A., Staines, A.G., McMahon, S.A., McNeil, M.R., Whitfield, C., and Naismith, J.H. (2001). UDP-galactopyranose mutase has a novel structure and mechanism. Nat. Struct. Biol.8, 858–863.10.1038/nsb1001-858Search in Google Scholar PubMed
Scherman, M.S., Winans, K.A., Stern, R.J., Jones, V., Bertozzi, C.R., and McNeil, M.R. (2003). Drug targeting Mycobacterium tuberculosis cell wall synthesis: development of a microtiter plate-based screen for UDP-galactopyranose mutase and identification of an inhibitor from a uridine-based library. Antimicrob. Agents Chemother.47, 378–382.10.1128/AAC.47.1.378-382.2003Search in Google Scholar PubMed PubMed Central
Soltero-Higgin, M., Carlson, E.E., Gruber, T.D., and Kiessling, L.L. (2004). A unique catalytic mechanism for UDP-galactopyranose mutase. Nat. Struct. Mol Biol.11, 539–543.10.1038/nsmb772Search in Google Scholar PubMed
Späth, G.F., Epstein, L., Leader, B., Singer, S.M., Avila, H.A., Turco, S.J., and Beverley, S.M. (2000). Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA97, 9258–9263.10.1073/pnas.160257897Search in Google Scholar PubMed PubMed Central
Späth, G.F., Garraway, L.A., Turco, S.J., and Beverley, S.M. (2003). The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc. Natl. Acad. Sci. USA100, 9536–9541.10.1073/pnas.1530604100Search in Google Scholar
Tsai, C.-M. and Frasch, C.E. (1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem.119, 115–119.10.1016/0003-2697(82)90673-XSearch in Google Scholar
Turco, S.J., Orlandi, P.A., Homans, S.W., Ferguson, M.A.J., Dwek, R.A., and Rademacher, T.W. (1989). Structure of the phosphosaccharide-inositol core of the Leishmania donovani lipophosphoglycan. J. Biol. Chem.264, 6711–6715.10.1016/S0021-9258(18)83487-1Search in Google Scholar
Vallon, O. (2000). New sequence motifs in flavoproteins: evidence for common ancestry and tools to predict structure. Proteins38, 95–114.10.1002/(SICI)1097-0134(20000101)38:1<95::AID-PROT10>3.0.CO;2-ASearch in Google Scholar
Weston, A., Stern, R.J., Lee, R.E., Nassau, P.M., Monsey, D., and Martin S.L. (1997). Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber. Lung Dis.78, 123–131.Search in Google Scholar
Wierenga, R.K., Drenth, J., and Schultz, G.E. (1983). Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. J. Mol. Biol.167, 725–739.10.1016/S0022-2836(83)80106-5Search in Google Scholar
Wilkinson, R.G., Gemski, P. Jr., and Stocker, B.A. (1972). Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J. Gen. Microbiol.70, 527–554.10.1099/00221287-70-3-527Search in Google Scholar
Zhang, K., Barron, T., Turco, S.J., and Beverley, S.M. (2004). The LPG1 gene family of Leishmania major. Mol. Biochem. Parasitol.136, 11–23.10.1016/j.molbiopara.2004.02.012Search in Google Scholar
©2005 by Walter de Gruyter Berlin New York