[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Capturing More Associations by Referencing External Graphs

Published: 03 May 2024 Publication History

Abstract

This paper studies association rule discovery in a graph G1 by referencing an external graph G2 with overlapping information. The objective is to enrich G1 with relevant properties and links from G2. As a testbed, we consider Graph Association Rules (GARs). We propose a notion of graph joins to enrich G1 by aligning entities across G1 and G2. We also introduce a graph filtering method to support graph joins, by fetching only the data of G2 that pertains to the entities of G1, to reduce noise and the size of the fused data. Based on these we develop a parallel algorithm to discover GARs across G1 and G2. Moreover, we provide an incremental GAR discovery algorithm in response to updates to G1 and G2. We show that both algorithms guarantee to reduce parallel runtime when given more processors. Better yet, the incremental algorithm is bounded relative to the batch one. Using real-life and synthetic data, we empirically verify that the methods improve the accuracy of association analyses by 30.4% on average, and scale well with large graphs.

References

[1]
2022. DBLP collaboration network. https://www.aminer.org/citation.
[2]
2022. Wikidata - Recent changes. https://www.amazon.science/blog/combining-knowledge-graphs-quickly-and-accurately.
[3]
2022. Wikipedia. https://www.wikipedia.org.
[4]
2023. DBpedia. http://www.dbpedia.org.
[5]
2023. Facebook Demographic Statistics. https://backlinko.com/facebook-users.
[6]
2023. Fraud Detection Contest Dataset. http://findit.univ-lr.fr.
[7]
2023. IMDB dataset. https://www.imdb.com/interfaces.
[8]
2023. The Mathematics Genealogy Project. https://mathgenealogy.org.
[9]
2023. Movielens. http://grouplens.org/datasets/movielens/.
[10]
2023. OpenStreeMap. http://www.openstreetmap.org.
[11]
2023. Sirene Database. https://www.sirene.fr/sirene/public/accueil.
[12]
2023. Social Network Usage and Growth Statistics. https://backlinko.com/social-media-users.
[13]
Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhattacharjee, Yuan-Chi Chang, and Panos Kalnis. 2017. Incremental Frequent Subgraph Mining on Large Evolving Graphs. IEEE Trans. Knowl. Data Eng. 29, 12 (2017), 2710--2723.
[14]
Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. 2014. Detecting unique column combinations on dynamic data. In ICDE. 1036--1047.
[15]
Ghadeer Abuoda, Saravanan Thirumuruganathan, and Ashraf Aboulnaga. 2022. Accelerating Entity Lookups in Knowledge Graphs Through Embeddings. In ICDE. 1111--1123.
[16]
Muhammad Aurangzeb Ahmad, Zoheb Borbora, Jaideep Srivastava, and Noshir S. Contractor. 2010. Link Prediction Across Multiple Social Networks. In ICDM Workshops. 911--918.
[17]
Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In SDKB. 23--39.
[18]
Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018. Accurate Text-Enhanced Knowledge Graph Representation Learning. In NAACL-HLT. 745--755.
[19]
Chloé Artaud, Nicolas Sidere, Antoine Doucet, Jean-Marc Ogier, and Vincent Poulain D'Andecy Yooz. 2018. Find it! Fraud Detection Contest Report. In ICPR. 13--18.
[20]
Çigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, and Aristides Gionis. 2018. Mining Frequent Patterns in Evolving Graphs. In CIKM. 923--932.
[21]
Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis. 2009. Mining Graph Evolution Rules. In ECML/PKDD. 115--130.
[22]
Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial Constraint Discovery with Hydra. Proc. VLDB Endow. 11, 3 (2017), 311--323.
[23]
Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A collaboratively created graph database for structuring human knowledge. In SIGMOD. 1247--1250.
[24]
Sarah Bouraga, Ivan Jureta, Stéphane Faulkner, and Caroline Herssens. 2014. Knowledge-based recommendation systems: a Survey. Int. J. Intell. Inf. Technol. 10, 2 (2014), 1--19.
[25]
K Buehler. 2019. Transforming approaches to aml and financial crime. McKinsey (2019).
[26]
Business of Data. 2020. How Graph Databases are Transforming Advanced Analytics. https://www.business-of-data.com/articles/graph-databases.
[27]
Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo. 2018. Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment. In IJCAI. 3998--4004.
[28]
Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law distributions in empirical data. SIAM review 51, 4 (2009), 661--703.
[29]
Brian Dean. 2020. Movie Recommendations Powered by Knowledge Graphs and Neo4j. https://towardsdatascience.com/movie-recommendations-powered-by-knowledge-graphs-and-neo4j-33603a212ad0.
[30]
Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In SIGKDD. 601--610.
[31]
Xingbo Du, Junchi Yan, and Hongyuan Zha. 2019. Joint Link Prediction and Network Alignment via Cross-graph Embedding. In IJCAI. 2251--2257.
[32]
Xingbo Du, Junchi Yan, Rui Zhang, and Hongyuan Zha. 2022. Cross-Network Skip-Gram Embedding for Joint Network Alignment and Link Prediction. IEEE Trans. Knowl. Data Eng. 34, 3 (2022), 1080--1095.
[33]
Wenfei Fan. 2022. Big Graphs: Challenges and Opportunities. Proc. VLDB Endow. 15, 12 (2022), 3782--3797.
[34]
Wenfei Fan, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. 2023. Making It Tractable to Catch Duplicates and Conflicts in Graphs. Proc. ACM Manag. Data 1, 1 (2023), 86:1--86:28.
[35]
Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. 2022. Discovering Association Rules from Big Graphs. Proc. VLDB Endow. 15, 7 (2022), 1479--1492.
[36]
Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management. Morgan & Claypool Publishers.
[37]
Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011), 683--698.
[38]
Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2022. Parallel Rule Discovery from Large Datasets by Sampling. In SIGMOD. 384--398.
[39]
Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering graph functional dependencies. ACM Trans. Database Syst. 45, 3 (2020), 15:1--15:42.
[40]
Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. 2020. Capturing Associations in Graphs. Proc. VLDB Endow. 13, 11 (2020), 1863--1876.
[41]
Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. 2022. Towards Event Prediction in Temporal Graphs. Proc. VLDB Endow. 15, 9 (2022), 1861--1874.
[42]
Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database Syst. 44, 2 (2019), 5:1--5:40.
[43]
Wenfei Fan, Ping Lu, Kehan Pang, Ruochun Jin, and Wenyuan Yu. 2024. Linking Entities across Relations and Graphs. ACM Trans. Database Syst. (2024).
[44]
Wenfei Fan and Chao Tian. 2022. Incremental Graph Computations: Doable and Undoable. ACM Trans. Database Syst. 47, 2 (2022), 6:1--6:44.
[45]
Wenfei Fan, Chao Tian, Yanghao Wang, and Qiang Yin. 2021. Parallel Discrepancy Detection and Incremental Detection. Proc. VLDB Endow. 14, 8 (2021), 1351--1364.
[46]
Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou. 2021. Incrementalizing Graph Algorithms. In SIGMOD. 459--471.
[47]
Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules with Graph Patterns. Proc. VLDB Endow. 8, 12 (2015), 1502--1513.
[48]
Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Adding counting quantifiers to graph patterns. In SIGMOD. 1215--1230.
[49]
Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs. In SIGMOD. 1843--1857.
[50]
Philippe Fournier-Viger, Ganghuan He, Chao Cheng, Jiaxuan Li, Min Zhou, Jerry Chun-Wei Lin, and Unil Yun. 2020. A survey of pattern mining in dynamic graphs. WIREs Data Mining Knowl. Discov. 10, 6 (2020).
[51]
Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In WWW. 2331--2341.
[52]
Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6 (2015), 707--730.
[53]
Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases. In WWW. 413--422.
[54]
Congcong Ge, Yunjun Gao, Honghui Weng, Chong Zhang, Xiaoye Miao, and Baihua Zheng. 2020. KGClean: An Embedding Powered Knowledge Graph Cleaning Framework. CoRR abs/2004.14478 (2020).
[55]
Genet Asefa Gesese, Russa Biswas, Mehwish Alam, and Harald Sack. 2021. A survey on knowledge graph embeddings with literals: Which model links better literal-ly? Semantic Web 12, 4 (2021), 617--647.
[56]
Yulong Gu, Yu Guan, and Paolo Missier. 2020. Towards learning instantiated logical rules from knowledge graphs. arXiv preprint arXiv:2003.06071 (2020).
[57]
Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2018. Knowledge Graph Embedding With Iterative Guidance From Soft Rules. In AAAI. 4816--4823.
[58]
Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In WWW. 507--517.
[59]
Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. 2013. YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract. In IJCAI. 3161--3165.
[60]
Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4 (2021), 71:1--71:37.
[61]
Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging Metapath based Context for Top- N Recommendation with A Neural Co-Attention Model. In KDD. 1531--1540.
[62]
Robert Isele, Anja Jentzsch, and Christian Bizer. 2010. Silk server-adding missing links while consuming linked data. In COLD. 85--96.
[63]
Jun'ichi Kazama and Kentaro Torisawa. 2007. Exploiting Wikipedia as External Knowledge for Named Entity Recognition. In EMNLP-CoNLL. 698--707.
[64]
Seyed Mehran Kazemi and David Poole. 2018. SimplE Embedding for Link Prediction in Knowledge Graphs. In NeurIPS. 4289--4300.
[65]
Agustinus Kristiadi, Mohammad Asif Khan, Denis Lukovnikov, Jens Lehmann, and Asja Fischer. 2019. Incorporating Literals into Knowledge Graph Embeddings. In ISWC. 347--363.
[66]
Walter G Kropatsch. 1995. Building irregular pyramids by dual-graph contraction. IEE Proceedings-Vision, Image and Signal Processing 142, 6 (1995), 366--374.
[67]
Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A complexity theory of efficient parallel algorithms. Theor. Comput. Sci. 71, 1 (1990), 95--132.
[68]
Eren Kurshan, Hongda Shen, and Haojie Yu. 2020. Financial Crime & Fraud Detection Using Graph Computing: Application Considerations & Outlook. In TransAI. 125--130.
[69]
Selasi Kwashie, Jixue Liu, Jiuyong Li, Lin Liu, Markus Stumptner, and Lujing Yang. 2019. Certus: An Effective Entity Resolution Approach with Graph Differential Dependencies (GDDs). Proc. VLDB Endow. 12, 6 (2019), 653--666.
[70]
Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167--195.
[71]
Cane Wing-ki Leung, Ee-Peng Lim, David Lo, and Jianshu Weng. 2010. Mining interesting link formation rules in social networks. In CIKM. 209--218.
[72]
Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May, Nathanael Chambers, and Clare Voss. 2020. Connecting the dots: Event graph schema induction with path language modeling. In EMNLP. 684--695.
[73]
Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-Hop Knowledge Graph Reasoning with Reward Shaping. In EMNLP. 3243--3253.
[74]
Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song Liu. 2015. Modeling Relation Paths for Representation Learning of Knowledge Bases. In EMNLP. 705--714.
[75]
Yuanna Liu, Jie Geng, Xinyang Deng, and Wen Jiang. 2021. Relation-Aware Neighborhood Aggregation for Cross-lingual Entity Alignment. In FUSION. 1--7.
[76]
Yinan Liu, Wei Shen, Yuanfei Wang, Jianyong Wang, Zhenglu Yang, and Xiaojie Yuan. 2021. Joint Open Knowledge Base Canonicalization and Linking. In SIGMOD. 2253--2261.
[77]
Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approximate Denial Constraints. Proc. VLDB Endow. 13, 10 (2020), 1682--1695.
[78]
Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt. 2019. Anytime Bottom-Up Rule Learning for Knowledge Graph Completion. In IJCAI. 3137--3143.
[79]
Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing and Optimizing LSTM Language Models. In ICLR.
[80]
Mohammad Hossein Namaki, Yinghui Wu, Qi Song, Peng Lin, and Tingjian Ge. 2017. Discovering Graph Temporal Association Rules. In CIKM. 1697--1706.
[81]
Muhammad Anis Uddin Nasir, Çigdem Aslay, Gianmarco De Francisci Morales, and Matteo Riondato. 2021. TipTap: Approximate Mining of Frequent k-Subgraph Patterns in Evolving Graphs. ACM Trans. Knowl. Discov. Data 15, 3 (2021), 48:1--48:35.
[82]
Sadegh Nobari, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. 2011. Fast random graph generation. In EDBT. 331--342.
[83]
Enrico Palumbo, Diego Monti, Giuseppe Rizzo, Raphaël Troncy, and Elena Baralis. 2020. entity2rec: Property-specific knowledge graph embeddings for item recommendation. Expert Syst. Appl. 151 (2020), 113235.
[84]
George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli, Giovanni Simonini, Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas, and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with JedAI. Inf. Syst. 93 (2020), 101565.
[85]
Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Functional Dependency Discovery: An Experimental Evaluation of Seven Algorithms. Proc. VLDB Endow. 8, 10 (2015), 1082--1093.
[86]
Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to functional dependency discovery. In SIGMOD. 821--833.
[87]
Pouya Pezeshkpour, Liyan Chen, and Sameer Singh. 2018. Embedding Multimodal Relational Data for Knowledge Base Completion. In EMNLP. 3208--3218.
[88]
Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang. 2021. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. In ICLR.
[89]
Erik Scharwächter, Emmanuel Müller, Jonathan F. Donges, Marwan Hassani, and Thomas Seidl. 2016. Detecting Change Processes in Dynamic Networks by Frequent Graph Evolution Rule Mining. In ICDM. 1191--1196.
[90]
Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD: Functional Dependency Discovery in Dynamic Datasets. In EDBT. 253--264.
[91]
Feichen Shen and Yugyung Lee. 2016. Knowledge discovery from biomedical ontologies in cross domains. PloS one 11, 8 (2016), e0160005.
[92]
Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. IEEE Trans. Knowl. Data Eng. 27, 2 (2015), 443--460.
[93]
Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. 2016. User Identity Linkage across Online Social Networks: A Review. SIGKDD Explor. 18, 2 (2016), 5--17.
[94]
Xibo Sun, Shixuan Sun, Qiong Luo, and Bingsheng He. 2022. An In-Depth Study of Continuous Subgraph Matching. Proc. VLDB Endow. 15, 7 (2022), 1403--1416.
[95]
Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks. Proc. VLDB Endow. 4, 11 (2011), 992--1003.
[96]
Zijing Tan, Ai Ran, Shuai Ma, and Sheng Qin. 2020. Fast incremental discovery of pointwise order dependencies. Proc. VLDB Endow. 16, 2 (2020), 1669--1681.
[97]
Beatriz Martínez Tornés, Emanuela Boros, Antoine Doucet, Petra Gomez-Krämer, Jean-Marc Ogier, and Vincent Poulain d'Andecy. 2019. Knowledge-Based Techniques for Document Fraud Detection: A Comprehensive Study. In CICLing. 17--33.
[98]
Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Gamon. 2015. Representing Text for Joint Embedding of Text and Knowledge Bases. In EMNLP. 1499--1509.
[99]
Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. 2019. Entity alignment between knowledge graphs using attribute embeddings. In AAAI. 297--304.
[100]
Karel Vaculík. 2015. A Versatile Algorithm for Predictive Graph Rule Mining. In ITAT. 51--58.
[101]
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[102]
Alina Vretinaris, Chuan Lei, Vasilis Efthymiou, Xiao Qin, and Fatma Özcan. 2021. Medical Entity Disambiguation Using Graph Neural Networks. In SIGMOD. 2310--2318.
[103]
Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and Zhongyuan Wang. 2019. Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. In KDD. 968--977.
[104]
Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. 2019. Knowledge graph convolutional networks for recommender systems. In WWW. 3307--3313.
[105]
Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT: Knowledge Graph Attention Network for Recommendation. In KDD. 950--958.
[106]
Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, and Tat-Seng Chua. 2021. Learning Intents behind Interactions with Knowledge Graph for Recommendation. In WWW. 878--887.
[107]
Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable Reasoning over Knowledge Graphs for Recommendation. In AAAI. 5329--5336.
[108]
Ze Wang, Guangyan Lin, Huobin Tan, Qinghong Chen, and Xiyang Liu. 2020. CKAN: Collaborative Knowledge-aware Attentive Network for Recommender Systems. In SIGIR. 219--228.
[109]
Antony J Williams, Lee Harland, Paul Groth, Stephen Pettifer, Christine Chichester, Egon L Willighagen, Chris T Evelo, Niklas Blomberg, Gerhard Ecker, Carole Goble, et al. 2012. Open PHACTS: semantic interoperability for drug discovery. Drug discovery today 17, 21-22 (2012), 1188--1198.
[110]
Renjie Xiao, Zijing Tan, Shuai Ma, Wei Wang, et al. 2022. Dynamic Functional Dependency Discovery with Dynamic Hitting Set Enumeration. In ICDE. 286--298.
[111]
Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2017. Image-embodied Knowledge Representation Learning. In IJCAI. 3140--3146.
[112]
Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based Substructure Pattern Mining. In ICDM. 721--724.
[113]
Fan Yang, Zhilin Yang, and William W. Cohen. 2017. Differentiable Learning of Logical Rules for Knowledge Base Reasoning. In NIPS. 2319--2328.
[114]
Reza Zafarani and Huan Liu. 2016. Users joining multiple sites: Friendship and popularity variations across sites. Inf. Fusion 28 (2016), 83--89.
[115]
Qianyi Zhan, Jiawei Zhang, Senzhang Wang, Philip S. Yu, and Junyuan Xie. 2015. Influence Maximization Across Partially Aligned Heterogenous Social Networks. In PAKDD. 58--69.
[116]
Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative Knowledge Base Embedding for Recommender Systems. In SIGKDD. 353--362.
[117]
Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A statistical perspective on discovering functional dependencies in noisy data. In SIGMOD. 861--876.
[118]
Lin Zhu, Xu Sun, Zijing Tan, Kejia Yang, Weidong Yang, Xiangdong Zhou, and Yingjie Tian. 2019. Incremental discovery of order dependencies on tuple insertions. In DASFAA. 157--174.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 17, Issue 6
February 2024
369 pages
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 03 May 2024
Published in PVLDB Volume 17, Issue 6

Check for updates

Badges

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 74
    Total Downloads
  • Downloads (Last 12 months)74
  • Downloads (Last 6 weeks)17
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media