Estado del arte en la enseñanza del pensamiento computacional y la programación en la etapa infantil
Resumen Aprender a programar es la nueva alfabetización del siglo XXI. El pensamiento computacional, estrechamente relacionado con la programación, requiere pensar y resolver problemas con diferentes niveles de abstracción y es independiente de los dispositivos de hardware. En este artículo se analizan las principales iniciativas relacionadas con el pensamiento computacional en las escuelas, el uso de herramientas específicas, tales como los kits de robótica o entornos de programación educativa, y principales estrategias de enseñanza-aprendizaje utilizadas en educación infantil.
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of learning group publication, 5(3), 438.
Alimisis, D., Moro, M., Arlegui, J., Pina, A., Frangou, S., & Papanikolaou, K. (2007, August). Robotics & constructivism in education: The TERECoP project. In EuroLogo (Vol. 40, pp. 19-24).
Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing without computers. The New Zealand Journal of Applied Computing and Information Technology, 13(1), 20-29.
Bender, W., Urrea, C., & Zapata-Ros, M. (2015). Pensamiento. RED, Revista de Educación a Distancia, 46, 1. doi:https://doi.org/10.6018/red/46/1
Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press.
Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to playground. Cary, NC: Oxford. doi:https://doi.org/10.1093/acprof:oso/9780199757022.001.0001
Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge. doi:https://doi.org/10.4324/9781315398945
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. doi:https://doi.org/10.1016/j.compedu.2013.10.020
Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. doi:https://doi.org/10.1016/j.compedu.2019.04.013
Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood. High-tech tots: Childhood in a digital world, 49, 49-70.
Bers, M. U., Ponte, I., Jurelich, K., Viera, A., & Schenker, J. (2002). Teachers as Designers: Integrating Robotics in Early Childhood Education. Information Technology in Childhood Education, 2002(1), 123-145.
Bers, M. U., & Resnick, M. (2015). The official ScratchJr book: Help your kids learn to code. No Starch Press.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice (No. JRC104188). Joint Research Centre (Seville site). doi:https://doi.org/10.2791/792158
Burnett, C. (2010). Technology and literacy in early childhood educational settings: A review of research. Journal of early childhood literacy, 10(3), 247-270. doi:https://doi.org/10.1177/1468798410372154
Burleson, W. S., Harlow, D. B., Nilsen, K. J., Perlin, K., Freed, N., Jensen, C. N., ... & Muldner, K. (2017). Active Learning Environments with Robotic Tangibles: Children’s Physical and Virtual Spatial Programming Experiences. IEEE Transactions on Learning Technologies, 11(1), 96-106. doi:https://doi.org/10.1109/TLT.2017.2724031
Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711.
Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends, 62, 563-573. doi:https://doi.org/10.1007/s11528-018-0292-7
Clements, D. H., Sarama, J., Farran, D., Lipsey, M., Hofer, K. G., & Bilbrey, C. (2011). An Examination of the Building Blocks Math Curriculum: Results of a Longitudinal Scale-Up Study. Society for Research on Educational Effectiveness.
Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of educational psychology, 76(6), 1051. doi:https://doi.org/10.1037/0022-0663.76.6.1051
Clements, D. H., & Meredith, J. S. (1993). Research on Logo: Effects and efficacy. Journal of Computing in Childhood Education, 4(4), 263-290.
Cruz, S. S. T., Rojas, O. E., Hurtado, J. A., & Collazos, C. A. (2013, August). ChildProgramming process: A software development model for kids. In 2013 8th Computing Colombian Conference (8CCC) (pp. 1-6). USA: IEEE. doi:https://doi.org/10.1109/ColombianCC.2013.6637535
Digital Agenda Scoreboard “Digital Inclusion and Skills” (2014). Recuperado de: https://bit.ly/2WuN5Yg
Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in human behavior, 71, 16-23. doi:https://doi.org/10.1016/j.chb.2017.01.018
ECDL Foundation (2015). Computing and Digital Literacy - Call for a Holistic Approach. Recuperado de: https://bit.ly/2MWtyR5
Eck, J., Hirschmugl-Gaisch, S., Hofmann, A., Kandlhofer, M., Rubenzer, S., & Steinbauer, G. (2013). Innovative concepts in educational robotics: Robotics projects for kindergartens in Austria. In Austrian Robotics Workshop (Vol. 14, p. 12).
Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169. doi:https://doi.org/10.28945/2094
European Schoolnet (2015). Computing our future. Computer programming and coding: priorities, school curricula and initiatives across Europe [Informe técnico]. Recuperado de: https://bit.ly/2wPZJqi
Fundación Telefónica (2017). Pensamiento Computacional. Recuperado de: https://bit.ly/2Ztke8H
García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3 – Coding European Project. In F. J. García-Peñalvo & J. A. Mendes (Eds.), 2016. International Sympousium on Computers in Education (SIEE 16). USA: IEEE. doi:https://doi.org/10.1109/SIIE.2016.7751876
García-Peñalvo, F. J. (2017). Pensamiento computacional en los estudios preuniversitarios. El enfoque de TACCLE3. Recuperado de: https://bit.ly/2wPvrUE. doi:https://doi.org/10.5281/zenodo.376310
García-Peñalvo, F. J. & Méndes, J.A. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411. doi:https://doi.org/10.1016/j.chb.2017.12.005
González-González, C. S., Guzmán-Franco, M. D., & Infante-Moro, A. (2019). Tangible Technologies for Childhood Education: A Systematic Review. Sustainability, 11(10), 2910. doi:https://doi.org/10.3390/su11102910
Google, Fundación Española para la Ciencia y la Tecnología (FECYT) y Everis (2016). Informe “EDUCACIÓN EN CIENCIAS DE LA COMPUTACIÓN EN ESPAÑA 2015”. Recuperado de: https://bit.ly/2iqhTYa
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43. doi:https://doi.org/10.3102/0013189X12463051
Guanhua, C., Ji, S., Lauren, B.-C., Shiyan, J., Xiaoting, H., & Moataz, E. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162–175. doi:https://doi.org/10.1016/j.compedu.2017.03.001
Hamner, E., & Cross, J. (2013). Arts & Bots: Techniques for distributing a STEAM robotics program through K-12 classrooms Proceedings of 2013 IEEE Integrated STEM Education Conference (ISEC) (March 9th, 2013, Princeton, NJ, USA) (pp. 1-5). USA: IEEE. doi:https://doi.org/10.1109/ISECon.2013.6525207
Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. In Proceedings of the joint meeting of PME 32 and PME-NA (pp. 169–176).
Hornack, M. A. (2011). Technology Integration Matrix.: Recuperado de: https://bit.ly/2wOh4jx
Janka, P. (2008). Using a programmable toy at preschool age: why and how. In Teaching with robotics: didactic approaches and experiences. Workshop of International Conference on Simulation, Modeling and Programming Autonomous Robots (pp. 112-121).
Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:https://doi.org/10.3390/su10040905
Kazakoff, R. E., Sullivan, A., & Bers, U. M. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education, 41, 245–255. doi:https://doi.org/10.1007/s10643-012-0554-5
Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary issues in technology and teacher education, 9(1), 60-70. doi:https://doi.org/10.1177/002205741319300303
Koschmann, T. D. (1996). Paradigm shifts and instructional technology: An introduction. In T. D. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 1-25). NJ: Lawrence Erlbaum.
Lee, K. T., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics to foster social interaction in kindergarten. Computers in the Schools, 30(3), 271-281. doi:https://doi.org/10.1080/07380569.2013.805676
Llorens Largo, F., García-Peñalvo, F. J., Molero Prieto, X., & Vendrell Vidal, E. (2017). La enseñanza de la informática, la programación y el pensamiento computacional en los estudios preuniversitarios. Education in the Knowledge Society, 18(2), 7-17. doi:https://doi.org/10.14201/eks2017182717
Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. British Journal of Educational Technology, 48(1), 191–201. doi:https://doi.org/10.1111/bjet.12355
Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29). New York, USA: ACM. doi:https://doi.org/10.1145/2713609.2713610
Martin G., Toledo G., & Cerverón V. (2002). Fundamentos de Informática y Programación. Recuperado de: https://bit.ly/2F5VdZ9
Ministerio de Educación, Cultura y Deporte de España (2018). Programación, robótica y pensamiento computacional en el aula. Situación en España. Recuperado de: https://bit.ly/2CoSOJC
Miranda-Pinto, M. S. (2016). Desafíos de programación y robótica en Educadión Preescolar: proyecto Kids Media Lab. En Tecnología, innovación e investigación en los procesos de enseñanza-aprendizaje (pp. 1848-1855). Barcelona, España: Octaedro.
Misirli, A., & Komis, V. (2014). Robotics and programming concepts in early childhood education: A conceptual framework for designing educational scenarios. In Research on e-Learning and ICT in Education (pp. 99-118). New York: Springer. doi:https://doi.org/10.1007/978-1-4614-6501-0_8
Nacher, V., Garcia-Sanjuan, F., & Jaen, J. (2015). Game Technologies for Kindergarten Instruction: Experiences and Future Challenges. In Proceedings of the 2nd Congreso de la Sociedad Española para las Ciencias del Videojuego (pp. 58-67).
Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I., & Van Luit, J. E. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82(1), 28-41. doi:https://doi.org/10.1111/j.2044-8279.2011.02043.x
Öztürk, H. T., & Calingasan, L. (2018). Robotics in early childhood education: A case study for the best practices. In H. Ozcinar, G. Wong, & H. Ozturk (Eds.). Teaching computational thinking in primary education (pp. 182–200). Hershey, PA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-3200-2.ch010
Pane, J. F., & Myers, B. A. (2001). Studying the language and structure in non-programmers’ solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237-264. doi:https://doi.org/10.1006/ijhc.2000.0410
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY, USA: Basic Books, Inc.
Pinto-Llorente, A. M., Casillas-Martín, S., Cabezas-González, M., & García-Peñalvo, F. J. (2018). Building, coding and programming 3D models via a visual programming environment. Quality & Quantity, 52(6), 2455–2468. doi:https://doi.org/10.1007/s11135-017-0509-4
Reina, M., & Reina, S. (2014). INFANTIC/TAC. Proyecto de alfabetización digital de alumn@s, familias y docentes. Recuperado de: https://bit.ly/2WDRRHK
Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., et al. (1998). Digital manipulatives. In Proceedings of the CHI ‘98 conference, Los Angeles, April 1998. doi:https://doi.org/10.1145/274644.274684
Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by studying how children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition (pp. 1-6). New York, USA: ACM. doi:https://doi.org/10.1145/1254960.1254961
Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, and Play. MIT Press. doi:https://doi.org/10.7551/mitpress/11017.001.0001
Revelo-Sánchez, O., Collazos-Ordóñez, C. A., & Jiménez-Toledo, J. A. (2018). El trabajo colaborativo como estrategia didáctica para la enseñanza/aprendizaje de la programación: una revisión sistemática de literatura. TecnoLógicas, 21(41), 115-134. doi:https://doi.org/10.22430/22565337.731
Román-González, M. (2016). Codigo alfabetización y pensamiento computacional en educación primaria y secundaria: validación de un instrumento y evaluación de programas. Tesis doctoral. UNED.
Serholt, S. (2018). Breakdowns in children’s interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250–264. doi:https://doi.org/10.1016/j.chb.2017.12.030
Sociedad Científica de España (2018). MANIFIESTO SOBRE LA ENSEÑANZA PREUNIVERSITARIA DE LA INFORMÁTICA. Manifiesto elaborado en colaboración con la Conferencia de Directores y Decanos de Ingeniería Informática (CODDI). Disponible en: https://bit.ly/2CMszIt
Segredo, E., Miranda, G., & León, C. (2017). Hacia la educación del futuro: El pensamiento computacional como mecanismo de aprendizaje generativo. Education in the Knowledge Society (EKS). 18(2), 33-58. doi https://doi.org/10.14201/eks2017182335
Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20. doi:https://doi.org/10.1007/s10798-015-9304-5
Sullivan, A., & Bers, M. U. (2017). Dancing robots: integrating art, music, and robotics in Singapore’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346. doi:https://doi.org/10.1007/s10798-017-9397-0
Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO robot demo: engaging young children in programming and engineering. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 418-421). New York, USA: ACM. doi:https://doi.org/10.1145/2771839.2771868
Van Kleeck, A., & Schuele, C. M. (2010). Historical perspectives on literacy in early childhood. American Journal of Speech-Language Pathology, 19(4), 341-355. doi:https://doi.org/10.1044/1058-0360(2010/09-0038)
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. doi:https://doi.org/10.1007/s10639-015-9412-6
Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. doi:https://doi.org/10.1145/1118178.1118215
Zapata-Ros, M. (2019). Computational Thinking Unplugged. Education in the Knowledge Society, 20, 18. doi:10.14201/eks2019_20_a18
Alimisis, D., Moro, M., Arlegui, J., Pina, A., Frangou, S., & Papanikolaou, K. (2007, August). Robotics & constructivism in education: The TERECoP project. In EuroLogo (Vol. 40, pp. 19-24).
Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing without computers. The New Zealand Journal of Applied Computing and Information Technology, 13(1), 20-29.
Bender, W., Urrea, C., & Zapata-Ros, M. (2015). Pensamiento. RED, Revista de Educación a Distancia, 46, 1. doi:https://doi.org/10.6018/red/46/1
Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press.
Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to playground. Cary, NC: Oxford. doi:https://doi.org/10.1093/acprof:oso/9780199757022.001.0001
Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge. doi:https://doi.org/10.4324/9781315398945
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. doi:https://doi.org/10.1016/j.compedu.2013.10.020
Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. doi:https://doi.org/10.1016/j.compedu.2019.04.013
Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood. High-tech tots: Childhood in a digital world, 49, 49-70.
Bers, M. U., Ponte, I., Jurelich, K., Viera, A., & Schenker, J. (2002). Teachers as Designers: Integrating Robotics in Early Childhood Education. Information Technology in Childhood Education, 2002(1), 123-145.
Bers, M. U., & Resnick, M. (2015). The official ScratchJr book: Help your kids learn to code. No Starch Press.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education-Implications for policy and practice (No. JRC104188). Joint Research Centre (Seville site). doi:https://doi.org/10.2791/792158
Burnett, C. (2010). Technology and literacy in early childhood educational settings: A review of research. Journal of early childhood literacy, 10(3), 247-270. doi:https://doi.org/10.1177/1468798410372154
Burleson, W. S., Harlow, D. B., Nilsen, K. J., Perlin, K., Freed, N., Jensen, C. N., ... & Muldner, K. (2017). Active Learning Environments with Robotic Tangibles: Children’s Physical and Virtual Spatial Programming Experiences. IEEE Transactions on Learning Technologies, 11(1), 96-106. doi:https://doi.org/10.1109/TLT.2017.2724031
Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711.
Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends, 62, 563-573. doi:https://doi.org/10.1007/s11528-018-0292-7
Clements, D. H., Sarama, J., Farran, D., Lipsey, M., Hofer, K. G., & Bilbrey, C. (2011). An Examination of the Building Blocks Math Curriculum: Results of a Longitudinal Scale-Up Study. Society for Research on Educational Effectiveness.
Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of educational psychology, 76(6), 1051. doi:https://doi.org/10.1037/0022-0663.76.6.1051
Clements, D. H., & Meredith, J. S. (1993). Research on Logo: Effects and efficacy. Journal of Computing in Childhood Education, 4(4), 263-290.
Cruz, S. S. T., Rojas, O. E., Hurtado, J. A., & Collazos, C. A. (2013, August). ChildProgramming process: A software development model for kids. In 2013 8th Computing Colombian Conference (8CCC) (pp. 1-6). USA: IEEE. doi:https://doi.org/10.1109/ColombianCC.2013.6637535
Digital Agenda Scoreboard “Digital Inclusion and Skills” (2014). Recuperado de: https://bit.ly/2WuN5Yg
Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in human behavior, 71, 16-23. doi:https://doi.org/10.1016/j.chb.2017.01.018
ECDL Foundation (2015). Computing and Digital Literacy - Call for a Holistic Approach. Recuperado de: https://bit.ly/2MWtyR5
Eck, J., Hirschmugl-Gaisch, S., Hofmann, A., Kandlhofer, M., Rubenzer, S., & Steinbauer, G. (2013). Innovative concepts in educational robotics: Robotics projects for kindergartens in Austria. In Austrian Robotics Workshop (Vol. 14, p. 12).
Elkin, M., Sullivan, A., & Bers, M. U. (2014). Implementing a robotics curriculum in an early childhood Montessori classroom. Journal of Information Technology Education: Innovations in Practice, 13, 153-169. doi:https://doi.org/10.28945/2094
European Schoolnet (2015). Computing our future. Computer programming and coding: priorities, school curricula and initiatives across Europe [Informe técnico]. Recuperado de: https://bit.ly/2wPZJqi
Fundación Telefónica (2017). Pensamiento Computacional. Recuperado de: https://bit.ly/2Ztke8H
García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3 – Coding European Project. In F. J. García-Peñalvo & J. A. Mendes (Eds.), 2016. International Sympousium on Computers in Education (SIEE 16). USA: IEEE. doi:https://doi.org/10.1109/SIIE.2016.7751876
García-Peñalvo, F. J. (2017). Pensamiento computacional en los estudios preuniversitarios. El enfoque de TACCLE3. Recuperado de: https://bit.ly/2wPvrUE. doi:https://doi.org/10.5281/zenodo.376310
García-Peñalvo, F. J. & Méndes, J.A. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411. doi:https://doi.org/10.1016/j.chb.2017.12.005
González-González, C. S., Guzmán-Franco, M. D., & Infante-Moro, A. (2019). Tangible Technologies for Childhood Education: A Systematic Review. Sustainability, 11(10), 2910. doi:https://doi.org/10.3390/su11102910
Google, Fundación Española para la Ciencia y la Tecnología (FECYT) y Everis (2016). Informe “EDUCACIÓN EN CIENCIAS DE LA COMPUTACIÓN EN ESPAÑA 2015”. Recuperado de: https://bit.ly/2iqhTYa
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43. doi:https://doi.org/10.3102/0013189X12463051
Guanhua, C., Ji, S., Lauren, B.-C., Shiyan, J., Xiaoting, H., & Moataz, E. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162–175. doi:https://doi.org/10.1016/j.compedu.2017.03.001
Hamner, E., & Cross, J. (2013). Arts & Bots: Techniques for distributing a STEAM robotics program through K-12 classrooms Proceedings of 2013 IEEE Integrated STEM Education Conference (ISEC) (March 9th, 2013, Princeton, NJ, USA) (pp. 1-5). USA: IEEE. doi:https://doi.org/10.1109/ISECon.2013.6525207
Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. In Proceedings of the joint meeting of PME 32 and PME-NA (pp. 169–176).
Hornack, M. A. (2011). Technology Integration Matrix.: Recuperado de: https://bit.ly/2wOh4jx
Janka, P. (2008). Using a programmable toy at preschool age: why and how. In Teaching with robotics: didactic approaches and experiences. Workshop of International Conference on Simulation, Modeling and Programming Autonomous Robots (pp. 112-121).
Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:https://doi.org/10.3390/su10040905
Kazakoff, R. E., Sullivan, A., & Bers, U. M. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education, 41, 245–255. doi:https://doi.org/10.1007/s10643-012-0554-5
Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary issues in technology and teacher education, 9(1), 60-70. doi:https://doi.org/10.1177/002205741319300303
Koschmann, T. D. (1996). Paradigm shifts and instructional technology: An introduction. In T. D. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 1-25). NJ: Lawrence Erlbaum.
Lee, K. T., Sullivan, A., & Bers, M. U. (2013). Collaboration by design: Using robotics to foster social interaction in kindergarten. Computers in the Schools, 30(3), 271-281. doi:https://doi.org/10.1080/07380569.2013.805676
Llorens Largo, F., García-Peñalvo, F. J., Molero Prieto, X., & Vendrell Vidal, E. (2017). La enseñanza de la informática, la programación y el pensamiento computacional en los estudios preuniversitarios. Education in the Knowledge Society, 18(2), 7-17. doi:https://doi.org/10.14201/eks2017182717
Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. British Journal of Educational Technology, 48(1), 191–201. doi:https://doi.org/10.1111/bjet.12355
Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29). New York, USA: ACM. doi:https://doi.org/10.1145/2713609.2713610
Martin G., Toledo G., & Cerverón V. (2002). Fundamentos de Informática y Programación. Recuperado de: https://bit.ly/2F5VdZ9
Ministerio de Educación, Cultura y Deporte de España (2018). Programación, robótica y pensamiento computacional en el aula. Situación en España. Recuperado de: https://bit.ly/2CoSOJC
Miranda-Pinto, M. S. (2016). Desafíos de programación y robótica en Educadión Preescolar: proyecto Kids Media Lab. En Tecnología, innovación e investigación en los procesos de enseñanza-aprendizaje (pp. 1848-1855). Barcelona, España: Octaedro.
Misirli, A., & Komis, V. (2014). Robotics and programming concepts in early childhood education: A conceptual framework for designing educational scenarios. In Research on e-Learning and ICT in Education (pp. 99-118). New York: Springer. doi:https://doi.org/10.1007/978-1-4614-6501-0_8
Nacher, V., Garcia-Sanjuan, F., & Jaen, J. (2015). Game Technologies for Kindergarten Instruction: Experiences and Future Challenges. In Proceedings of the 2nd Congreso de la Sociedad Española para las Ciencias del Videojuego (pp. 58-67).
Navarro, J. I., Aguilar, M., Marchena, E., Ruiz, G., Menacho, I., & Van Luit, J. E. (2012). Longitudinal study of low and high achievers in early mathematics. British Journal of Educational Psychology, 82(1), 28-41. doi:https://doi.org/10.1111/j.2044-8279.2011.02043.x
Öztürk, H. T., & Calingasan, L. (2018). Robotics in early childhood education: A case study for the best practices. In H. Ozcinar, G. Wong, & H. Ozturk (Eds.). Teaching computational thinking in primary education (pp. 182–200). Hershey, PA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-3200-2.ch010
Pane, J. F., & Myers, B. A. (2001). Studying the language and structure in non-programmers’ solutions to programming problems. International Journal of Human-Computer Studies, 54(2), 237-264. doi:https://doi.org/10.1006/ijhc.2000.0410
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY, USA: Basic Books, Inc.
Pinto-Llorente, A. M., Casillas-Martín, S., Cabezas-González, M., & García-Peñalvo, F. J. (2018). Building, coding and programming 3D models via a visual programming environment. Quality & Quantity, 52(6), 2455–2468. doi:https://doi.org/10.1007/s11135-017-0509-4
Reina, M., & Reina, S. (2014). INFANTIC/TAC. Proyecto de alfabetización digital de alumn@s, familias y docentes. Recuperado de: https://bit.ly/2WDRRHK
Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., et al. (1998). Digital manipulatives. In Proceedings of the CHI ‘98 conference, Los Angeles, April 1998. doi:https://doi.org/10.1145/274644.274684
Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by studying how children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition (pp. 1-6). New York, USA: ACM. doi:https://doi.org/10.1145/1254960.1254961
Resnick, M. (2017). Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, and Play. MIT Press. doi:https://doi.org/10.7551/mitpress/11017.001.0001
Revelo-Sánchez, O., Collazos-Ordóñez, C. A., & Jiménez-Toledo, J. A. (2018). El trabajo colaborativo como estrategia didáctica para la enseñanza/aprendizaje de la programación: una revisión sistemática de literatura. TecnoLógicas, 21(41), 115-134. doi:https://doi.org/10.22430/22565337.731
Román-González, M. (2016). Codigo alfabetización y pensamiento computacional en educación primaria y secundaria: validación de un instrumento y evaluación de programas. Tesis doctoral. UNED.
Serholt, S. (2018). Breakdowns in children’s interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250–264. doi:https://doi.org/10.1016/j.chb.2017.12.030
Sociedad Científica de España (2018). MANIFIESTO SOBRE LA ENSEÑANZA PREUNIVERSITARIA DE LA INFORMÁTICA. Manifiesto elaborado en colaboración con la Conferencia de Directores y Decanos de Ingeniería Informática (CODDI). Disponible en: https://bit.ly/2CMszIt
Segredo, E., Miranda, G., & León, C. (2017). Hacia la educación del futuro: El pensamiento computacional como mecanismo de aprendizaje generativo. Education in the Knowledge Society (EKS). 18(2), 33-58. doi https://doi.org/10.14201/eks2017182335
Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20. doi:https://doi.org/10.1007/s10798-015-9304-5
Sullivan, A., & Bers, M. U. (2017). Dancing robots: integrating art, music, and robotics in Singapore’s early childhood centers. International Journal of Technology and Design Education, 28(2), 325-346. doi:https://doi.org/10.1007/s10798-017-9397-0
Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO robot demo: engaging young children in programming and engineering. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 418-421). New York, USA: ACM. doi:https://doi.org/10.1145/2771839.2771868
Van Kleeck, A., & Schuele, C. M. (2010). Historical perspectives on literacy in early childhood. American Journal of Speech-Language Pathology, 19(4), 341-355. doi:https://doi.org/10.1044/1058-0360(2010/09-0038)
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. doi:https://doi.org/10.1007/s10639-015-9412-6
Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. doi:https://doi.org/10.1145/1118178.1118215
Zapata-Ros, M. (2019). Computational Thinking Unplugged. Education in the Knowledge Society, 20, 18. doi:10.14201/eks2019_20_a18
González-González, C. S. (2019). Estado del arte en la enseñanza del pensamiento computacional y la programación en la etapa infantil. Education in the Knowledge Society (EKS), 20, 15. https://doi.org/10.14201/eks2019_20_a17
Descargas
Los datos de descargas todavía no están disponibles.
+
−