default search action
Terence L. van Zyl
Person information
- affiliation: University of Johannesburg, South Africa
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Thokozile Manaka, Terence L. van Zyl, Deepak Kar, Alisha N. Wade:
Multi-step Transfer Learning in Natural Language Processing for the Health Domain. Neural Process. Lett. 56(3): 177 (2024) - 2023
- [c29]Terence L. van Zyl:
Late Meta-learning Fusion Using Representation Learning for Time Series Forecasting. FUSION 2023: 1-8 - [c28]Taeisha Nundlall, Terence L. van Zyl:
Machine Learning for Socially Responsible Portfolio Optimisation. ISMSI 2023: 1-6 - [c27]Sonia Bullah, Terence L. van Zyl:
A Learnheuristic Approach to A Constrained Multi-Objective Portfolio Optimisation Problem. ISMSI 2023: 58-65 - [i30]Terence L. van Zyl:
Late Meta-learning Fusion Using Representation Learning for Time Series Forecasting. CoRR abs/2303.11000 (2023) - [i29]Sonia Bullah, Terence L. van Zyl:
A Learnheuristic Approach to A Constrained Multi-Objective Portfolio Optimisation Problem. CoRR abs/2304.06675 (2023) - [i28]Taeisha Nundlall, Terence L. van Zyl:
Machine Learning for Socially Responsible Portfolio Optimisation. CoRR abs/2305.12364 (2023) - 2022
- [j9]Mohamed Zayyan Variawa, Terence L. van Zyl, Matthew Woolway:
Transfer Learning and Deep Metric Learning for Automated Galaxy Morphology Representation. IEEE Access 10: 19539-19550 (2022) - [c26]Nicholas Baard, Terence L. van Zyl:
Twin-Delayed Deep Deterministic Policy Gradient Algorithm for Portfolio Selection. CIFEr 2022: 1-8 - [c25]Andrew Paskaramoorthy, Terence L. van Zyl, Tim Gebbie:
An Empirical Comparison of Cross-Validation Procedures for Portfolio Selection. CIFEr 2022: 1-10 - [c24]Mufhumudzi Muthivhi, Terence L. van Zyl:
Fusion of Sentiment and Asset Price Predictions for Portfolio Optimization. FUSION 2022: 1-8 - [c23]Thokozile Manaka, Terence L. van Zyl, Deepak Kar:
Improving Cause-of-Death Classification from Verbal Autopsy Reports. SACAIR 2022: 46-59 - [c22]Mufhumudzi Muthivhi, Terence L. van Zyl, Hairong Wang:
Multi-modal Recommendation System with Auxiliary Information. SACAIR 2022: 108-122 - [c21]Gift Khangamwa, Terence L. van Zyl, Clint J. van Alten:
Towards a Methodology for Addressing Missingness in Datasets, with an Application to Demographic Health Datasets. SACAIR 2022: 169-186 - [i27]Nishai Kooverjee, Steven James, Terence L. van Zyl:
Investigating Transfer Learning in Graph Neural Networks. CoRR abs/2202.00740 (2022) - [i26]Thabang Mathonsi, Terence L. van Zyl:
Statistics and Deep Learning-based Hybrid Model for Interpretable Anomaly Detection. CoRR abs/2202.12720 (2022) - [i25]Pieter Cawood, Terence L. van Zyl:
Evaluating State of the Art, Forecasting Ensembles- and Meta-learning Strategies for Model Fusion. CoRR abs/2203.03279 (2022) - [i24]Mufhumudzi Muthivhi, Terence L. van Zyl:
Fusion of Sentiment and Asset Price Predictions for Portfolio Optimization. CoRR abs/2203.05673 (2022) - [i23]Ruan Pretorius, Terence L. van Zyl:
Deep Reinforcement Learning and Convex Mean-Variance Optimisation for Portfolio Management. CoRR abs/2203.11318 (2022) - [i22]Thokozile Manaka, Terence L. van Zyl, Alisha N. Wade, Deepak Kar:
Using Machine Learning to Fuse Verbal Autopsy Narratives and Binary Features in the Analysis of Deaths from Hyperglycaemia. CoRR abs/2204.12169 (2022) - [i21]Liezl Stander, Matthew Woolway, Terence L. van Zyl:
Surrogate Assisted Evolutionary Multi-objective Optimisation applied to a Pressure Swing Adsorption system. CoRR abs/2204.12585 (2022) - [i20]Nimesh Bhana, Terence L. van Zyl:
Knowledge Graph Fusion for Language Model Fine-tuning. CoRR abs/2206.14574 (2022) - [i19]Terence L. van Zyl, Matthew Woolway, Andrew Paskaramoorthy:
Pareto Driven Surrogate (ParDen-Sur) Assisted Optimisation of Multi-period Portfolio Backtest Simulations. CoRR abs/2209.13528 (2022) - [i18]Mufhumudzi Muthivhi, Terence L. van Zyl, Hairong Wang:
Multi-Modal Recommendation System with Auxiliary Information. CoRR abs/2210.10652 (2022) - [i17]V. Ncume, Terence L. van Zyl, Andrew Paskaramoorthy:
Volatility forecasting using Deep Learning and sentiment analysis. CoRR abs/2210.12464 (2022) - [i16]Mohamed Zayyan Variawa, Terence L. van Zyl, Matthew Woolway:
Exploring the effectiveness of surrogate-assisted evolutionary algorithms on the batch processing problem. CoRR abs/2210.17149 (2022) - [i15]Thokozile Manaka, Terence L. van Zyl, Deepak Kar:
Improving Cause-of-Death Classification from Verbal Autopsy Reports. CoRR abs/2210.17161 (2022) - [i14]Gift Khangamwa, Terence L. van Zyl, Clint J. van Alten:
Towards a methodology for addressing missingness in datasets, with an application to demographic health datasets. CoRR abs/2211.02856 (2022) - 2021
- [j8]Zainoolabadien Karim, Terence L. van Zyl:
Deep/Transfer Learning with Feature Space Ensemble Networks (FeatSpaceEnsNets) and Average Ensemble Networks (AvgEnsNets) for Change Detection Using DInSAR Sentinel-1 and Optical Sentinel-2 Satellite Data Fusion. Remote. Sens. 13(21): 4394 (2021) - [j7]Nkosikhona Dlamini, Terence L. van Zyl:
Comparing Class-Aware and Pairwise Loss Functions for Deep Metric Learning in Wildlife Re-Identification. Sensors 21(18): 6109 (2021) - [j6]Terence L. van Zyl, Turgay Çelik:
Did We Produce More Waste During the COVID-19 Lockdowns? A Remote Sensing Approach to Landfill Change Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14: 7349-7358 (2021) - [c20]Siddeeq Laher, Andrew Paskaramoorthy, Terence L. van Zyl:
Deep Learning for Financial Time Series Forecast Fusion and Optimal Portfolio Rebalancing. FUSION 2021: 1-8 - [c19]Timilehin Ogundare, Terence L. van Zyl:
Surrogate Parameters Optimization for Data and Model Fusion of COVID-19 Time-series Data. FUSION 2021: 1-7 - [c18]Andrew Paskaramoorthy, Tim Gebbie, Terence L. van Zyl:
The efficient frontiers of mean-variance portfolio rules under distribution misspecification. FUSION 2021: 1-8 - [c17]Bryce Engelbrecht, Terence L. van Zyl:
Comparing CNN Architectures for Land Cover Classification on Multispectral Images. IGARSS 2021: 5378-5381 - [c16]Terence L. van Zyl:
Full Rotation Hyper-ellipsoid Multivariate Adaptive Bandwidth Kernel Density Estimator. SACAIR 2021: 287-303 - [i13]Daniel Yazbek, Jonathan Sandile Sibindi, Terence L. van Zyl:
Deep Similarity Learning for Sports Team Ranking. CoRR abs/2103.13736 (2021) - [i12]Terence L. van Zyl, Matthew Woolway, Andrew Paskaramoorthy:
ParDen: Surrogate Assisted Hyper-Parameter Optimisation for Portfolio Selection. CoRR abs/2107.02121 (2021) - [i11]Pieter Cawood, Terence L. van Zyl:
Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case Study of the COVID-19 Epidemic Curves. CoRR abs/2108.08723 (2021) - [i10]Rylan Perumal, Terence L. van Zyl:
Surrogate Assisted Strategies (The Parameterisation of an Infectious Disease Agent-Based Model). CoRR abs/2108.08809 (2021) - [i9]Timilehin Ogundare, Terence L. van Zyl:
Surrogate Parameters Optimization for Data and Model Fusion of COVID-19 Time-series Data. CoRR abs/2109.04207 (2021) - [i8]Matthew Kruger, Terence L. van Zyl, Andrew Paskaramoorthy:
AMA-K: Aggressive Multi-Temporal Allocation An Algorithm for Aggressive Online Portfolio Selection. CoRR abs/2109.13508 (2021) - [i7]Jiahao Huo, Terence L. van Zyl:
Incremental Class Learning using Variational Autoencoders with Similarity Learning. CoRR abs/2110.01303 (2021) - [i6]Thabang Mathonsi, Terence L. van Zyl:
Multivariate Anomaly Detection based on Prediction Intervals Constructed using Deep Learning. CoRR abs/2110.03393 (2021) - [i5]Thabang Mathonsi, Terence L. van Zyl:
A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling. CoRR abs/2112.08618 (2021) - 2020
- [c15]J. Atherfold, Terence L. van Zyl:
A Method for Dissolved Gas Forecasting in Power Transformers Using LS-SVM. FUSION 2020: 1-8 - [c14]Jiahao Huo, Terence L. van Zyl:
Unique Faces Recognition in Videos. FUSION 2020: 1-7 - [c13]Rowan Lange, Tony Lange, Terence L. van Zyl:
Predicting Particle Fineness in a Cement Mill. FUSION 2020: 1-8 - [c12]Habeebullah Manack, Terence L. van Zyl:
Deep Similarity Learning for Soccer Team Ranking. FUSION 2020: 1-7 - [c11]Liezl Stander, Matthew Woolway, Terence L. van Zyl:
Data-Driven Evolutionary Optimisation for the design parameters of a Chemical Process: A Case Study. FUSION 2020: 1-8 - [c10]Mohamed Zayyan Variawa, Terence L. van Zyl, Matthew Woolway:
A rules-based and Transfer Learning approach for deriving the Hubble type of a galaxy from the Galaxy Zoo data. FUSION 2020: 1-7 - [c9]Terence L. van Zyl, Matthew Woolway, Bryce Engelbrecht:
Unique Animal Identification using Deep Transfer Learning For Data Fusion in Siamese Networks. FUSION 2020: 1-6 - [c8]Shivaar Sooklal, Terence L. van Zyl, Andrew Paskaramoorthy:
DRICORN-K: A Dynamic RIsk CORrelation-driven Non-parametric Algorithm for Online Portfolio Selection. SACAIR 2020: 183-196 - [i4]Nishai Kooverjee, Steven James, Terence L. van Zyl:
Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep Character Recognition. CoRR abs/2001.00448 (2020) - [i3]Rylan Perumal, Terence L. van Zyl:
Comparison of Recurrent Neural Network Architectures for Wildfire Spread Modelling. CoRR abs/2005.13040 (2020) - [i2]Jiahao Huo, Terence L. van Zyl:
Unique Faces Recognition in Videos. CoRR abs/2006.05713 (2020) - [i1]Rylan Perumal, Terence L. van Zyl:
Surrogate Assisted Methods for the Parameterisation of Agent-Based Models. CoRR abs/2008.11835 (2020)
2010 – 2019
- 2018
- [j5]Bolelang Sibolla, Serena Coetzee, Terence L. van Zyl:
A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams. ISPRS Int. J. Geo Inf. 7(12): 475 (2018) - 2013
- [c7]Terence L. van Zyl, Graeme McFerren:
Applying Sensor Web strategies to Big Data earth observations. IGARSS 2013: 798-799 - 2012
- [j4]Terence L. van Zyl, Anwar Vahed, Graeme McFerren, Derek Hohls:
Earth Observation Scientific Workflows in a Distributed Computing Environment. Trans. GIS 16(2): 233-248 (2012) - 2010
- [j3]Terence L. van Zyl, Elizabeth Marie Ehlers:
Signal-regulated systems and networks. Complex. 15(6): 50-63 (2010) - [j2]Liping Di, Karen Moe, Terence L. van Zyl:
Earth Observation Sensor Web: An Overview. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 3(4-1): 415-417 (2010)
2000 – 2009
- 2009
- [j1]Terence L. van Zyl, Ingo Simonis, Graeme McFerren:
The Sensor Web: systems of sensor systems. Int. J. Digit. Earth 2(1): 16-30 (2009) - [c6]Terence L. van Zyl, Anwar Vahed, Graeme McFerren, Petrus Shabangu, Bheki Cwele:
Using SensorML to Describe Scientific Workflows in Distributed Web Service Environments. IGARSS (5) 2009: 375-377 - [c5]Terence L. van Zyl, Elizabeth Marie Ehlers:
Self-organising Sensor Web using Cell-Fate Optimisation. IGARSS (5) 2009: 461-464 - 2008
- [c4]Terence L. van Zyl:
GEOSS From Orbit, A Sensor Web Approach. IGARSS (1) 2008: 134-137 - [c3]Graeme McFerren, Terence L. van Zyl, Marna van der Merwe, Martella du Preez:
User Requirements for Sensor Web based Scientific Workflows in the Cholera Research Domain. IGARSS (5) 2008: 136-139 - [c2]Wabo Majavu, Terence L. van Zyl, Tshilidzi Marwala:
Classification of web resident sensor resources using Latent Semantic Indexing and ontologies. SMC 2008: 518-523 - 2007
- [c1]Terence L. van Zyl, Elizabeth Marie Ehlers:
A Need for Biologically Inspired Architectural Description: The Agent Ontogenesis Case. PRIMA 2007: 146-157
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:50 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint