default search action
Samuel Horváth
Person information
- affiliation: King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
PaDPaF: Partial Disentanglement with Partially-Federated GANs. Trans. Mach. Learn. Res. 2024 (2024) - [c21]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. AISTATS 2024: 4879-4887 - [c20]Viktor Moskvoretskii, Nazarii Tupitsa, Chris Biemann, Samuel Horváth, Eduard Gorbunov, Irina Nikishina:
Low-Resource Machine Translation through the Lens of Personalized Federated Learning. EMNLP (Findings) 2024: 8806-8825 - [c19]Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel E. Dvurechensky, Alexander V. Gasnikov, Peter Richtárik:
High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise. ICML 2024 - [c18]Samuel Horváth, Stefanos Laskaridis, Shashank Rajput, Hongyi Wang:
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition. ICML 2024 - [c17]Nurbek Tastan, Samar Fares, Toluwani Aremu, Samuel Horváth, Karthik Nandakumar:
Redefining Contributions: Shapley-Driven Federated Learning. IJCAI 2024: 5009-5017 - [c16]Nikita Kotelevskii, Samuel Horváth, Karthik Nandakumar, Martin Takác, Maxim Panov:
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks. IJCAI 2024: 7127-7135 - [i45]Nazarii Tupitsa, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Federated Learning Can Find Friends That Are Beneficial. CoRR abs/2402.05050 (2024) - [i44]Mohammed Aljahdali, Ahmed M. Abdelmoniem, Marco Canini, Samuel Horváth:
Flashback: Understanding and Mitigating Forgetting in Federated Learning. CoRR abs/2402.05558 (2024) - [i43]Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad. CoRR abs/2403.02648 (2024) - [i42]Yunxiang Li, Nicolas Mauricio Cuadrado, Samuel Horváth, Martin Takác:
Generalized Policy Learning for Smart Grids: FL TRPO Approach. CoRR abs/2403.18439 (2024) - [i41]Yunxiang Li, Rui Yuan, Chen Fan, Mark Schmidt, Samuel Horváth, Robert M. Gower, Martin Takác:
Enhancing Policy Gradient with the Polyak Step-Size Adaption. CoRR abs/2404.07525 (2024) - [i40]Nurbek Tastan, Samar Fares, Toluwani Aremu, Samuel Horváth, Karthik Nandakumar:
Redefining Contributions: Shapley-Driven Federated Learning. CoRR abs/2406.00569 (2024) - [i39]Saveliy Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander V. Gasnikov, Samuel Horváth, Martin Takác, Eduard Gorbunov:
Gradient Clipping Improves AdaGrad when the Noise Is Heavy-Tailed. CoRR abs/2406.04443 (2024) - [i38]Salma Kharrat, Marco Canini, Samuel Horváth:
Decentralized Personalized Federated Learning. CoRR abs/2406.06520 (2024) - [i37]Viktor Moskvoretskii, Nazarii Tupitsa, Chris Biemann, Samuel Horváth, Eduard Gorbunov, Irina Nikishina:
Low-Resource Machine Translation through the Lens of Personalized Federated Learning. CoRR abs/2406.12564 (2024) - [i36]Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth, Martin Takác:
Methods for Convex (L0,L1)-Smooth Optimization: Clipping, Acceleration, and Adaptivity. CoRR abs/2409.14989 (2024) - [i35]Nurbek Tastan, Samuel Horváth, Martin Takác, Karthik Nandakumar:
FedPeWS: Personalized Warmup via Subnetworks for Enhanced Heterogeneous Federated Learning. CoRR abs/2410.03042 (2024) - [i34]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
Collaborative and Efficient Personalization with Mixtures of Adaptors. CoRR abs/2410.03497 (2024) - [i33]Philip Zmushko, Aleksandr Beznosikov, Martin Takác, Samuel Horváth:
FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training. CoRR abs/2411.07837 (2024) - [i32]Kaustubh Ponkshe, Raghav Singhal, Eduard Gorbunov, Alexey Tumanov, Samuel Horváth, Praneeth Vepakomma:
Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning. CoRR abs/2411.19557 (2024) - 2023
- [j5]Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan:
On Biased Compression for Distributed Learning. J. Mach. Learn. Res. 24: 276:1-276:50 (2023) - [j4]Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, Sebastian U. Stich:
Stochastic distributed learning with gradient quantization and double-variance reduction. Optim. Methods Softw. 38(1): 91-106 (2023) - [c15]Eduard Gorbunov, Samuel Horváth, Peter Richtárik, Gauthier Gidel:
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top. ICLR 2023 - [c14]Eduard Gorbunov, Adrien B. Taylor, Samuel Horváth, Gauthier Gidel:
Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity. ICML 2023: 11614-11641 - [c13]Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel E. Dvurechensky, Alexander V. Gasnikov, Peter Richtárik:
High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance. ICML 2023: 29563-29648 - [c12]Nikita Kornilov, Ohad Shamir, Aleksandr V. Lobanov, Darina Dvinskikh, Alexander V. Gasnikov, Innokentiy Shibaev, Eduard Gorbunov, Samuel Horváth:
Accelerated Zeroth-order Method for Non-Smooth Stochastic Convex Optimization Problem with Infinite Variance. NeurIPS 2023 - [c11]Sara Pieri, Jose Renato Restom, Samuel Horváth, Hisham Cholakkal:
Handling Data Heterogeneity via Architectural Design for Federated Visual Recognition. NeurIPS 2023 - [c10]Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takác, Karthik Nandakumar, Samuel Horváth, Eduard Gorbunov:
Byzantine-Tolerant Methods for Distributed Variational Inequalities. NeurIPS 2023 - [i31]Abdurakhmon Sadiev, Marina Danilova, Eduard Gorbunov, Samuel Horváth, Gauthier Gidel, Pavel E. Dvurechensky, Alexander V. Gasnikov, Peter Richtárik:
High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance. CoRR abs/2302.00999 (2023) - [i30]Grigory Malinovsky, Samuel Horváth, Konstantin Burlachenko, Peter Richtárik:
Federated Learning with Regularized Client Participation. CoRR abs/2302.03662 (2023) - [i29]Xiangjian Hou, Sarit Khirirat, Mohammad Yaqub, Samuel Horváth:
Improving Performance of Private Federated Models in Medical Image Analysis. CoRR abs/2304.05127 (2023) - [i28]Konstantin Mishchenko, Rustem Islamov, Eduard Gorbunov, Samuel Horváth:
Partially Personalized Federated Learning: Breaking the Curse of Data Heterogeneity. CoRR abs/2305.18285 (2023) - [i27]Jihao Xin, Marco Canini, Peter Richtárik, Samuel Horváth:
Global-QSGD: Practical Floatless Quantization for Distributed Learning with Theoretical Guarantees. CoRR abs/2305.18627 (2023) - [i26]Sarit Khirirat, Eduard Gorbunov, Samuel Horváth, Rustem Islamov, Fakhri Karray, Peter Richtárik:
Clip21: Error Feedback for Gradient Clipping. CoRR abs/2305.18929 (2023) - [i25]Samuel Horváth, Stefanos Laskaridis, Shashank Rajput, Hongyi Wang:
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition. CoRR abs/2308.14929 (2023) - [i24]Eduard Gorbunov, Abdurakhmon Sadiev, Marina Danilova, Samuel Horváth, Gauthier Gidel, Pavel E. Dvurechensky, Alexander V. Gasnikov, Peter Richtárik:
High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise. CoRR abs/2310.01860 (2023) - [i23]Sara Pieri, Jose Renato Restom, Samuel Horváth, Hisham Cholakkal:
Handling Data Heterogeneity via Architectural Design for Federated Visual Recognition. CoRR abs/2310.15165 (2023) - [i22]Nazarii Tupitsa, Abdulla Jasem Almansoori, Yanlin Wu, Martin Takác, Karthik Nandakumar, Samuel Horváth, Eduard Gorbunov:
Byzantine-Tolerant Methods for Distributed Variational Inequalities. CoRR abs/2311.04611 (2023) - [i21]Grigory Malinovsky, Peter Richtárik, Samuel Horváth, Eduard Gorbunov:
Byzantine Robustness and Partial Participation Can Be Achieved Simultaneously: Just Clip Gradient Differences. CoRR abs/2311.14127 (2023) - [i20]Nikita Kotelevskii, Samuel Horváth, Karthik Nandakumar, Martin Takác, Maxim Panov:
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks. CoRR abs/2312.11230 (2023) - [i19]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. CoRR abs/2312.15799 (2023) - 2022
- [b1]Samuel Horváth:
Better Methods and Theory for Federated Learning: Compression, Client Selection and Heterogeneity. King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2022 - [j3]Samuel Horváth, Lihua Lei, Peter Richtárik, Michael I. Jordan:
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization. SIAM J. Math. Data Sci. 4(2): 634-648 (2022) - [j2]Wenlin Chen, Samuel Horváth, Peter Richtárik:
Optimal Client Sampling for Federated Learning. Trans. Mach. Learn. Res. 2022 (2022) - [j1]Samuel Horváth, Maziar Sanjabi, Lin Xiao, Peter Richtárik, Michael G. Rabbat:
FedShuffle: Recipes for Better Use of Local Work in Federated Learning. Trans. Mach. Learn. Res. 2022 (2022) - [c9]Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik:
FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning. AISTATS 2022: 11374-11421 - [c8]Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, Peter Richtárik:
Natural Compression for Distributed Deep Learning. MSML 2022: 129-141 - [i18]Konstantin Burlachenko, Samuel Horváth, Peter Richtárik:
FL_PyTorch: optimization research simulator for federated learning. CoRR abs/2202.03099 (2022) - [i17]Samuel Horváth, Maziar Sanjabi, Lin Xiao, Peter Richtárik, Michael G. Rabbat:
FedShuffle: Recipes for Better Use of Local Work in Federated Learning. CoRR abs/2204.13169 (2022) - [i16]Eduard Gorbunov, Samuel Horváth, Peter Richtárik, Gauthier Gidel:
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top. CoRR abs/2206.00529 (2022) - [i15]Samuel Horváth:
Better Methods and Theory for Federated Learning: Compression, Client Selection and Heterogeneity. CoRR abs/2207.00392 (2022) - [i14]Samuel Horváth, Malik Shahid Sultan, Hernando Ombao:
Granger Causality using Neural Networks. CoRR abs/2208.03703 (2022) - [i13]Samuel Horváth, Konstantin Mishchenko, Peter Richtárik:
Adaptive Learning Rates for Faster Stochastic Gradient Methods. CoRR abs/2208.05287 (2022) - [i12]Abdulla Jasem Almansoori, Samuel Horváth, Martin Takác:
Partial Disentanglement with Partially-Federated GANs (PaDPaF). CoRR abs/2212.03836 (2022) - 2021
- [c7]Samuel Horváth, Aaron Klein, Peter Richtárik, Cédric Archambeau:
Hyperparameter Transfer Learning with Adaptive Complexity. AISTATS 2021: 1378-1386 - [c6]Konstantin Burlachenko, Samuel Horváth, Peter Richtárik:
FL_PyTorch: optimization research simulator for federated learning. DistributedML@CoNEXT 2021: 1-7 - [c5]Samuel Horváth, Peter Richtárik:
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning. ICLR 2021 - [c4]Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, Nicholas D. Lane:
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. NeurIPS 2021: 12876-12889 - [i11]Samuel Horváth, Aaron Klein, Peter Richtárik, Cédric Archambeau:
Hyperparameter Transfer Learning with Adaptive Complexity. CoRR abs/2102.12810 (2021) - [i10]Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, Nicholas D. Lane:
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. CoRR abs/2102.13451 (2021) - [i9]Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Agüera y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas N. Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horváth, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecný, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtárik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, Wennan Zhu:
A Field Guide to Federated Optimization. CoRR abs/2107.06917 (2021) - [i8]Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik:
FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning. CoRR abs/2111.11556 (2021) - 2020
- [c3]Dmitry Kovalev, Samuel Horváth, Peter Richtárik:
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop. ALT 2020: 451-467 - [c2]Filip Hanzely, Slavomír Hanzely, Samuel Horváth, Peter Richtárik:
Lower Bounds and Optimal Algorithms for Personalized Federated Learning. NeurIPS 2020 - [i7]Samuel Horváth, Lihua Lei, Peter Richtárik, Michael I. Jordan:
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization. CoRR abs/2002.05359 (2020) - [i6]Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan:
On Biased Compression for Distributed Learning. CoRR abs/2002.12410 (2020) - [i5]Samuel Horváth, Peter Richtárik:
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning. CoRR abs/2006.11077 (2020) - [i4]Filip Hanzely, Slavomír Hanzely, Samuel Horváth, Peter Richtárik:
Lower Bounds and Optimal Algorithms for Personalized Federated Learning. CoRR abs/2010.02372 (2020) - [i3]Wenlin Chen, Samuel Horváth, Peter Richtárik:
Optimal Client Sampling for Federated Learning. CoRR abs/2010.13723 (2020)
2010 – 2019
- 2019
- [c1]Samuel Horváth, Peter Richtárik:
Nonconvex Variance Reduced Optimization with Arbitrary Sampling. ICML 2019: 2781-2789 - [i2]Dmitry Kovalev, Samuel Horváth, Peter Richtárik:
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop. CoRR abs/1901.08689 (2019) - [i1]Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, Peter Richtárik:
Natural Compression for Distributed Deep Learning. CoRR abs/1905.10988 (2019)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint