default search action
José Luis Contreras-Vidal
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j16]Alexander Craik, Juan José González-España, Ayman Alamir, David Edquilang, Sarah Wong, Lianne Sánchez Rodríguez, Jeff Feng, Gerard E. Francisco, José L. Contreras-Vidal:
Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface. Sensors 23(13): 5930 (2023) - [j15]Nikunj A. Bhagat, Gerard E. Francisco, José Luis Contreras-Vidal:
A State-Space Control Approach for Tracking Isometric Grip Force During BMI Enabled Neuromuscular Stimulation. IEEE Trans. Hum. Mach. Syst. 53(6): 996-1005 (2023) - [c54]Laura Ferrero, Vicente Quiles, Paula Soriano-Segura, Mario Ortiz, Eduardo Iáñez, José Luis Contreras-Vidal, José Maria Azorín:
Transfer Learning with CNN Models for Brain-Machine Interfaces to command lower-limb exoskeletons: A Solution for Limited Data. EMBC 2023: 1-4 - [c53]Juan José González-España, Lianne Sánchez Rodríguez, Alexander Craik, Sarah Wong, Jeff Feng, José Luis Contreras-Vidal:
Brain-eNet: Towards an Enabling Technology for BCI-IoT Systems. SMC 2023: 3073-3078 - [c52]Juan José González-España, Alexander Craik, Carolina Ramirez, Ayman Alamir, José Luis Contreras-Vidal:
Optimization of Electrode Configuration for the Removal of Eye Artifacts with Adaptive Noise Cancellation. SMC 2023: 3259-3264 - [c51]Juan José González-España, Ki-Joon Back, Dennis Reynolds, José Luis Contreras-Vidal:
Decoding Taste from EEG: Gustatory Evoked Potentials During Wine Tasting. SMC 2023: 4253-4258 - [d5]Alexander G. Steele, Amir Faraji, José L. Contreras-Vidal:
The dataset for the Electrospinography (ESG) for non-invasively recording spinal sensorimotor networks in humans project. IEEE DataPort, 2023 - 2022
- [j14]Anton Nijholt, José Luis Contreras-Vidal, Camille Jeunet, Aleksander Väljamäe:
Editorial: Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education, Well-Being) Applications. Frontiers Comput. Sci. 4: 860619 (2022) - [d4]Mauricio Adolfo Ramírez-Moreno, Jesus G. Cruz-Garza, José L. Contreras-Vidal:
Mobile EEG recordings of musical (jazz) improvisation. IEEE DataPort, 2022 - 2021
- [j13]David Eguren, José Luis Contreras-Vidal:
Navigating the FDA Medical Device Regulatory Pathways for Pediatric Lower Limb Exoskeleton Devices. IEEE Syst. J. 15(2): 2361-2368 (2021) - [j12]Andrew Y. Paek, Justin A. Brantley, Barbara J. Evans, José Luis Contreras-Vidal:
Concerns in the Blurred Divisions Between Medical and Consumer Neurotechnology. IEEE Syst. J. 15(2): 3069-3080 (2021) - [c50]Niell Gorman, Antoinette Louw, Alexander Craik, Jose Gonzalez, Jeff Feng, José Luis Contreras-Vidal:
Design Principles for Mobile Brain-Body Imaging Devices with Optimized Ergonomics. AHFE (17) 2021: 3-10 - 2020
- [j11]Mario Ortíz, Eduardo Iáñez, José L. Contreras-Vidal, José Maria Azorín:
Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study. Frontiers Neurorobotics 14: 48 (2020) - [c49]Andrew Y. Paek, Atilla Kilicarslan, Branislav Korenko, Vladislav Gerginov, Svenja Knappe, José Luis Contreras-Vidal:
Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers. EMBC 2020: 3420-3423 - [c48]Akshay Sujatha Ravindran, Manuel Cestari, Christopher Malaya, Isaac John, Gerard E. Francisco, Charles Layne, José Luis Contreras-Vidal:
Interpretable Deep Learning Models for Single Trial Prediction of Balance Loss. SMC 2020: 268-273
2010 – 2019
- 2019
- [c47]Mohammad Badri Ahmadi, Alexander Craik, Hamid Fekri Azgomi, Joseph T. Francis, José Luis Contreras-Vidal, Rose T. Faghih:
Real-Time Seizure State Tracking Using Two Channels: A Mixed-Filter Approach. ACSSC 2019: 2033-2039 - [c46]Atilla Kilicarslan, José Luis Contreras-Vidal:
Towards a Unified Framework for De-noising Neural Signals. EMBC 2019: 620-623 - [c45]Alexander Craik, Atilla Kilicarslan, José Luis Contreras-Vidal:
Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks. EMBC 2019: 3046-3049 - [c44]David Eguren, Manuel Cestari, Trieu Phat Luu, Atilla Kilicarslan, Alexander G. Steele, José Luis Contreras-Vidal:
Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. SMC 2019: 2411-2416 - [c43]Mario Ortíz, Eduardo Iáñez, Jorge Antonio Gaxiola-Tirado, Atilla Kilicarslan, José Luis Contreras-Vidal, José Maria Azorín:
Assessment of motor imagery in gamma band using a lower limb exoskeleton. SMC 2019: 2773-2778 - [c42]Trieu Phat Luu, David Eguren, Manuel Cestari, José L. Contreras-Vidal:
EEG-based Neural Decoding of Gait in Developing Children. SMC 2019: 3608-3612 - [c41]Alexander Craik, Atilla Kilicarslan, José L. Contreras-Vidal:
A Translational Roadmap for a Brain-Machine-Interface (BMI) System for Rehabilitation. SMC 2019: 3613-3618 - [p2]Jesus G. Cruz-Garza, Girija Chatufale, Dario Robleto, José L. Contreras-Vidal:
Your Brain on Art: A New Paradigm to Study Artistic Creativity Based on the 'Exquisite Corpse' Using Mobile Brain-Body Imaging. Brain Art 2019: 283-308 - [p1]Eric Todd, Jesus G. Cruz-Garza, Austin Moreau, James Templeton, José Luis Contreras-Vidal:
Self-conscience/Physical Memory: An Immersive, Kinetic Art Installation Driven by Real-Time and Archival EEG Signals. Brain Art 2019: 309-323 - [d3]Jesus G. Cruz-Garza, Justin A. Brantley, Sho Nakagome, Kimberly Kontson, Dario Robleto, José L. Contreras-Vidal:
Mobile EEG Recordings in an Art Museum Setting. IEEE DataPort, 2019 - 2018
- [d2]Akshay Sujatha Ravindran, Jesus G. Cruz-Garza, Anastasiya Kopteva, Andrew Y. Paek, Aryan Mobiny, Zachary Hernandez, José Luis Contreras-Vidal:
Multi-modal mobile brain-body imaging (MoBI) dataset for assaying neural and head movement responses associated with creative video game play in children. IEEE DataPort, 2018 - [d1]Jesús Tamez-Duque, Mayra De-Alba, Guillermo Herrera-Arcos, Fernanda Zapata-Murrieta, José L. Contreras-Vidal, Rogelio Soto:
Dataset: Modulation of Neural Activity during Guided Viewing of Visual Art. IEEE DataPort, 2018 - 2017
- [c40]José L. Contreras-Vidal, Jesus Cruz-Garza, Anastasiya Kopteva:
Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities. BCI 2017: 1-4 - [c39]Trieu Phat Luu, Justin A. Brantley, Fangshi Zhu, José Luis Contreras-Vidal:
Electrocortical amplitude modulations of human level-ground, slope, and stair walking. EMBC 2017: 1913-1916 - [c38]Jennifer L. Sullivan, Nikunj A. Bhagat, Nuray Yozbatiran, Ruta Paranjape, Colin G. Losey, Robert G. Grossman, José L. Contreras-Vidal, Gerard E. Francisco, Marcia K. O'Malley:
Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial. ICORR 2017: 122-127 - [c37]Justin A. Brantley, Trieu Phat Luu, Sho Nakagame, José L. Contreras-Vidal:
Prediction of lower-limb joint kinematics from surface EMG during overground locomotion. SMC 2017: 1705-1709 - [c36]Trieu Phat Luu, Justin A. Brantley, Fangshi Zhu, José L. Contreras-Vidal:
Cortical features of locomotion-mode transitions via non-invasive EEG. SMC 2017: 2437-2441 - [c35]Trieu Phat Luu, Yongtian He, Sho Nakagome, José L. Contreras-Vidal:
EEG-based brain-computer interface to a virtual walking avatar engages cortical adaptation. SMC 2017: 3054-3057 - [c34]Sho Nakagome, Trieu Phat Luu, Justin A. Brantley, José L. Contreras-Vidal:
Prediction of EMG envelopes of multiple terrains over-ground walking from EEG signals using an unscented Kalman filter. SMC 2017: 3175-3178 - 2016
- [c33]Trieu Phat Luu, Yongtian He, Sho Nakagome, Jeffrey Gorges, Kevin Nathan, José L. Contreras-Vidal:
Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography. EMBC 2016: 1548-1551 - [c32]Anna T. Winslow, Justin A. Brantley, Fangshi Zhu, José L. Contreras-Vidal, He Huang:
Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: A preliminary investigation. EMBC 2016: 4634-4637 - [c31]Justin A. Brantley, Trieu Phat Luu, Recep Ozdemir, Fangshi Zhu, Anna T. Winslow, He Huang, José L. Contreras-Vidal:
Noninvasive EEG correlates of overground and stair walking. EMBC 2016: 5729-5732 - 2015
- [j10]José Luis Contreras-Vidal, Atilla Kilicarslan, He (Helen) Huang, Robert G. Grossman:
Human-Centered Design of Wearable Neuroprostheses and Exoskeletons. AI Mag. 36(4): 12-22 (2015) - [j9]Jesús Tamez-Duque, Rebeca Cobian-Ugalde, Atilla Kilicarslan, Anusha Venkatakrishnan, Rogelio Soto, José Luis Contreras-Vidal:
Real-Time Strap Pressure Sensor System for Powered Exoskeletons. Sensors 15(2): 4550-4563 (2015) - [c30]Yongtian He, José L. Contreras-Vidal:
Classification of finger vibrotactile input using scalp EEG. EMBC 2015: 4717-4720 - [c29]Andrew Y. Paek, Alycia Gailey, Pranav Parikh, Marco Santello, José Luis Contreras-Vidal:
Predicting hand forces from scalp electroencephalography during isometric force production and object grasping. EMBC 2015: 7570-7573 - 2014
- [c28]Zachery R. Hernandez, Jesus Cruz-Garza, Teresa Tse, José L. Contreras-Vidal:
Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants. EMBC 2014: 2115-2118 - [c27]Yongtian He, Kevin Nathan, Anusha Venkatakrishnan, Roger Rovekamp, Christopher Beck, Recep Ozdemir, Gerard E. Francisco, José L. Contreras-Vidal:
An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton. EMBC 2014: 3985-3988 - [c26]Harshavardhan A. Agashe, José L. Contreras-Vidal:
Observation-based training for neuroprosthetic control of grasping by amputees. EMBC 2014: 3989-3992 - [c25]Nikunj A. Bhagat, James A. French, Anusha Venkatakrishnan, Nuray Yozbatiran, Gerard E. Francisco, Marcia K. O'Malley, José Luis Contreras-Vidal:
Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke. EMBC 2014: 4127-4130 - [c24]José L. Contreras-Vidal:
Identifying engineering, clinical and patient's metrics for evaluating and quantifying performance of brain-machine interface (BMI) systems. SMC 2014: 1489-1492 - 2013
- [c23]José Luis Contreras-Vidal, Robert G. Grossman:
NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. EMBC 2013: 1579-1582 - [c22]M. Claros, Rogelio Soto, José de Jesús Rodríguez-Ortiz, C. Cantu, José L. Contreras-Vidal:
Novel compliant actuator for wearable robotics applications. EMBC 2013: 2854-2857 - [c21]Harshavardhan A. Agashe, José L. Contreras-Vidal:
Decoding the evolving grasping gesture from electroencephalographic (EEG) activity. EMBC 2013: 5590-5593 - [c20]Andrew Y. Paek, Jeremy D. Brown, R. Brent Gillespie, Marcia K. O'Malley, Patricia A. Shewokis, José L. Contreras-Vidal:
Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device. EMBC 2013: 5602-5605 - [c19]Atilla Kilicarslan, Saurabh Prasad, Robert G. Grossman, José L. Contreras-Vidal:
High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. EMBC 2013: 5606-5609 - [c18]Thomas C. Bulea, Saurabh Prasad, Atilla Kilicarslan, José L. Contreras-Vidal:
Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction. EMBC 2013: 6341-6344 - [c17]Jeremy D. Brown, Andrew Y. Paek, Mashaal Syed, Marcia Kilchenman O'Malley, Patricia A. Shewokis, José Luis Contreras-Vidal, Alicia J. Davis, R. Brent Gillespie:
Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. World Haptics 2013: 271-276 - [c16]Ryan Christiansen, José Luis Contreras-Vidal, R. Brent Gillespie, Patricia A. Shewokis, Marcia Kilchenman O'Malley:
Vibrotactile feedback of pose error enhances myoelectric control of a prosthetic hand. World Haptics 2013: 531-536 - 2012
- [c15]Hyuk Oh, Rodolphe J. Gentili, James A. Reggia, José Luis Contreras-Vidal:
Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation. EMBC 2012: 2551-2554 - [c14]Rodolphe J. Gentili, Hyuk Oh, Javier Molina, James A. Reggia, José Luis Contreras-Vidal:
Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. EMBC 2012: 3052-3055 - 2011
- [c13]Hyuk Oh, Rodolphe J. Gentili, James A. Reggia, José L. Contreras-Vidal:
Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system. EMBC 2011: 4183-4186 - [c12]José L. Contreras-Vidal, Trent J. Bradberry:
Design principles for noninvasive brain-machine interfaces. EMBC 2011: 4223-4226 - [c11]Alessandro Presacco, Larry Forrester, José L. Contreras-Vidal:
Towards a non-invasive brain-machine interface system to restore gait function in humans. EMBC 2011: 4588-4591 - [c10]Harshavardhan A. Agashe, José Luis Contreras-Vidal:
Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals. EMBC 2011: 5444-5447 - [c9]Anusha Venkatakrishnan, José L. Contreras-Vidal, Marco Sandrini, Leonardo G. Cohen:
Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation. EMBC 2011: 8102-8105 - [c8]Rodolphe J. Gentili, Hyuk Oh, Javier Molina, José L. Contreras-Vidal:
Cortical network modeling for inverse kinematic computation of an anthropomorphic finger. EMBC 2011: 8251-8254
2000 – 2009
- 2009
- [j8]Javier Molina-Vilaplana, José Luis Contreras-Vidal, M. T. Herrero-Ezquerro, Juan López Coronado:
A model for altered neural network dynamics related to prehension movements in Parkinson disease. Biol. Cybern. 100(4): 271-287 (2009) - [j7]Trent J. Bradberry, Feng Rong, José L. Contreras-Vidal:
Decoding center-out hand velocity from MEG signals during visuomotor adaptation. NeuroImage 47(4): 1691-1700 (2009) - [c7]Ozkan Celik, Marcia Kilchenman O'Malley, R. Brent Gillespie, Patricia A. Shewokis, José Luis Contreras-Vidal:
Compact and low-cost tendon vibrator for inducing proprioceptive illusions. WHC 2009: 623-624 - [c6]R. Brent Gillespie, John Baker, Marcia Kilchenman O'Malley, Patricia A. Shewokis, José Luis Contreras-Vidal:
Functionally biarticular control for smart prosthetics. WHC 2009: 627-628 - [c5]Bradley D. Hatfield, Amy J. Haufler, José L. Contreras-Vidal:
Brain Processes and Neurofeedback for Performance Enhancement of Precision Motor Behavior. HCI (16) 2009: 810-817 - 2008
- [j6]Shihua Wen, Antonio Ulloa, Fatima T. Husain, Barry Horwitz, José L. Contreras-Vidal:
Simulated neural dynamics of decision-making in an auditory delayed match-to-sample task. Biol. Cybern. 99(1): 15-27 (2008) - [c4]Rodolphe J. Gentili, Trent J. Bradberry, Bradley D. Hatfield, José Luis Contreras-Vidal:
A new generation of non-invasive biomarkers of cognitive-motor states with application to smart brain-computer interfaces. EUSIPCO 2008: 1-5 - 2007
- [j5]Moritz Grosse-Wentrup, José L. Contreras-Vidal:
The role of the striatum in adaptation learning: a computational model. Biol. Cybern. 96(4): 377-388 (2007) - 2004
- [j4]José L. Contreras-Vidal, Scott E. Kerick:
Independent component analysis of dynamic brain responses during visuomotor adaptation. NeuroImage 21(3): 936-945 (2004) - 2001
- [c3]José Luis Contreras-Vidal, Antonio Ulloa, Juan López Coronado, J. Calabozo-Moran:
Neural dynamics of hand pre-shaping during prehension. SMC 2001: 3019-3024
1990 – 1999
- 1999
- [j3]José L. Contreras-Vidal, Wolfram Schultz:
A Predictive Reinforcement Model of Dopamine Neurons for Learning Approach Behavior. J. Comput. Neurosci. 6(3): 191-214 (1999) - 1998
- [j2]José L. Contreras-Vidal, Patricia Poluha, Hans-Leo Teulings, George E. Stelmach:
Neural dynamics of short and medium-term motor control effects of levodopa therapy in Parkinson's disease. Artif. Intell. Medicine 13(1-2): 57-79 (1998) - 1995
- [j1]José Luis Contreras-Vidal, George E. Stelmach:
A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol. Cybern. 73(5): 467-476 (1995) - 1991
- [c2]Horacio Martinez-Alfaro, José L. Contreras-Vidal:
A robust real-time pitch detector based on neural networks. ICASSP 1991: 521-523 - [c1]Yannis A. Dimitriadis, Juan López Coronado, José Luis Contreras-Vidal:
An Adaptive Resonance Theory Architecture for the Automatic Recognition of on-line Handwritten Symbols of a Mathematical Editor. IWANN 1991: 216-226
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-11 01:05 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint