default search action
Andreas Loukas
Person information
- affiliation: Swiss Federal Institute of Technology in Lausanne, Switzerland
- affiliation (former): Technische Universität Berlin
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c40]Nathan C. Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse, Isidro Hötzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir Gligorijevic, Saeed Saremi:
Protein Discovery with Discrete Walk-Jump Sampling. ICLR 2024 - [i39]Natasa Tagasovska, Vladimir Gligorijevic, Kyunghyun Cho, Andreas Loukas:
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient. CoRR abs/2405.18075 (2024) - [i38]Andreas Loukas, Karolis Martinkus, Ed Wagstaff, Kyunghyun Cho:
Generalizing to any diverse distribution: uniformity, gentle finetuning and rebalancing. CoRR abs/2410.05980 (2024) - 2023
- [c39]Mattia Atzeni, Mrinmaya Sachan, Andreas Loukas:
Infusing Lattice Symmetry Priors in Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning. ICML 2023: 1200-1217 - [c38]Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, Tommaso Biancalani:
Towards Understanding and Improving GFlowNet Training. ICML 2023: 30956-30975 - [c37]Karolis Martinkus, Jan Ludwiczak, Wei-Ching Liang, Julien Lafrance-Vanasse, Isidro Hötzel, Arvind Rajpal, Yan Wu, Kyunghyun Cho, Richard Bonneau, Vladimir Gligorijevic, Andreas Loukas:
AbDiffuser: full-atom generation of in-vitro functioning antibodies. NeurIPS 2023 - [i37]Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, Tommaso Biancalani:
Towards Understanding and Improving GFlowNet Training. CoRR abs/2305.07170 (2023) - [i36]Mattia Atzeni, Mrinmaya Sachan, Andreas Loukas:
Infusing Lattice Symmetry Priors in Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning. CoRR abs/2306.03175 (2023) - [i35]Nathan C. Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse, Isidro Hötzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir Gligorijevic, Saeed Saremi:
Protein Discovery with Discrete Walk-Jump Sampling. CoRR abs/2306.12360 (2023) - [i34]Andreas Loukas, Pan Kessel:
Batched Predictors Generalize within Distribution. CoRR abs/2307.09379 (2023) - [i33]Karolis Martinkus, Jan Ludwiczak, Kyunghyun Cho, Wei-Ching Liang, Julien Lafrance-Vanasse, Isidro Hötzel, Arvind Rajpal, Yan Wu, Richard Bonneau, Vladimir Gligorijevic, Andreas Loukas:
AbDiffuser: Full-Atom Generation of In-Vitro Functioning Antibodies. CoRR abs/2308.05027 (2023) - 2022
- [j10]Andreas Scheck, Stéphane Rosset, Michaël Defferrard, Andreas Loukas, Jaume Bonet, Pierre Vandergheynst, Bruno E. Correia:
RosettaSurf - A surface-centric computational design approach. PLoS Comput. Biol. 18(3) (2022) - [c36]Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, Roger Wattenhofer:
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators. ICML 2022: 15159-15179 - [c35]Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, Stefanie Jegelka:
On the generalization of learning algorithms that do not converge. NeurIPS 2022 - [c34]Nikolaos Karalias, Joshua Robinson, Andreas Loukas, Stefanie Jegelka:
Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions. NeurIPS 2022 - [i32]Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, Roger Wattenhofer:
SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators. CoRR abs/2204.01613 (2022) - [i31]Nikolaos Karalias, Joshua Robinson, Andreas Loukas, Stefanie Jegelka:
Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions. CoRR abs/2208.04055 (2022) - [i30]Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, Stefanie Jegelka:
On the generalization of learning algorithms that do not converge. CoRR abs/2208.07951 (2022) - [i29]Natasa Tagasovska, Nathan C. Frey, Andreas Loukas, Isidro Hötzel, Julien Lafrance-Vanasse, Ryan Lewis Kelly, Yan Wu, Arvind Rajpal, Richard Bonneau, Kyunghyun Cho, Stephen Ra, Vladimir Gligorijevic:
A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences. CoRR abs/2210.10838 (2022) - [i28]Max W. Shen, Ehsan Hajiramezanali, Gabriele Scalia, Alex M. Tseng, Nathaniel Diamant, Tommaso Biancalani, Andreas Loukas:
Conditional Diffusion with Less Explicit Guidance via Model Predictive Control. CoRR abs/2210.12192 (2022) - 2021
- [c33]Yihe Dong, Jean-Baptiste Cordonnier, Andreas Loukas:
Attention is not all you need: pure attention loses rank doubly exponentially with depth. ICML 2021: 2793-2803 - [c32]Andreas Loukas, Marinos Poiitis, Stefanie Jegelka:
What training reveals about neural network complexity. NeurIPS 2021: 494-508 - [c31]Mattia Atzeni, Jasmina Bogojeska, Andreas Loukas:
SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning. NeurIPS 2021: 12587-12599 - [c30]Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, Michael M. Bronstein:
Partition and Code: learning how to compress graphs. NeurIPS 2021: 18603-18619 - [i27]Yihe Dong, Jean-Baptiste Cordonnier, Andreas Loukas:
Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth. CoRR abs/2103.03404 (2021) - [i26]Andreas Loukas, Marinos Poiitis, Stefanie Jegelka:
What training reveals about neural network complexity. CoRR abs/2106.04186 (2021) - [i25]Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, Michael M. Bronstein:
Partition and Code: learning how to compress graphs. CoRR abs/2107.01952 (2021) - [i24]Mattia Atzeni, Jasmina Bogojeska, Andreas Loukas:
SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning. CoRR abs/2110.14266 (2021) - 2020
- [j9]Chen Avin, Marcin Bienkowski, Andreas Loukas, Maciej Pacut, Stefan Schmid:
Dynamic Balanced Graph Partitioning. SIAM J. Discret. Math. 34(3): 1791-1812 (2020) - [c29]Yu Jin, Andreas Loukas, Joseph F. JáJá:
Graph Coarsening with Preserved Spectral Properties. AISTATS 2020: 4452-4462 - [c28]Jean-Baptiste Cordonnier, Andreas Loukas, Martin Jaggi:
On the Relationship between Self-Attention and Convolutional Layers. ICLR 2020 - [c27]Andreas Loukas:
What graph neural networks cannot learn: depth vs width. ICLR 2020 - [c26]Nikolaos Karalias, Andreas Loukas:
Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs. NeurIPS 2020 - [c25]Andreas Loukas:
How hard is to distinguish graphs with graph neural networks? NeurIPS 2020 - [c24]Clément Vignac, Andreas Loukas, Pascal Frossard:
Building powerful and equivariant graph neural networks with structural message-passing. NeurIPS 2020 - [i23]Andreas Loukas:
How hard is graph isomorphism for graph neural networks? CoRR abs/2005.06649 (2020) - [i22]Nikolaos Karalias, Andreas Loukas:
Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs. CoRR abs/2006.10643 (2020) - [i21]Clément Vignac, Andreas Loukas, Pascal Frossard:
Building powerful and equivariant graph neural networks with message-passing. CoRR abs/2006.15107 (2020) - [i20]Jean-Baptiste Cordonnier, Andreas Loukas, Martin Jaggi:
Multi-Head Attention: Collaborate Instead of Concatenate. CoRR abs/2006.16362 (2020)
2010 – 2019
- 2019
- [j8]Andreas Loukas, Nathanaël Perraudin:
Stationary time-vertex signal processing. EURASIP J. Adv. Signal Process. 2019: 36 (2019) - [j7]Andreas Loukas:
Graph Reduction with Spectral and Cut Guarantees. J. Mach. Learn. Res. 20: 116:1-116:42 (2019) - [j6]Elvin Isufi, Andreas Loukas, Nathanaël Perraudin, Geert Leus:
Forecasting Time Series With VARMA Recursions on Graphs. IEEE Trans. Signal Process. 67(18): 4870-4885 (2019) - [c23]Jean-Baptiste Cordonnier, Andreas Loukas:
Extrapolating Paths with Graph Neural Networks. IJCAI 2019: 2187-2194 - [i19]Nicolas Tremblay, Andreas Loukas:
Approximating Spectral Clustering via Sampling: a Review. CoRR abs/1901.10204 (2019) - [i18]Jean-Baptiste Cordonnier, Andreas Loukas:
Extrapolating paths with graph neural networks. CoRR abs/1903.07518 (2019) - [i17]Konstantinos Pitas, Andreas Loukas, Mike Davies, Pierre Vandergheynst:
Some limitations of norm based generalization bounds in deep neural networks. CoRR abs/1905.09677 (2019) - [i16]Younjoo Seo, Andreas Loukas, Nathanaël Perraudin:
Discriminative structural graph classification. CoRR abs/1905.13422 (2019) - [i15]Andreas Loukas:
What graph neural networks cannot learn: depth vs width. CoRR abs/1907.03199 (2019) - [i14]Jean-Baptiste Cordonnier, Andreas Loukas, Martin Jaggi:
On the Relationship between Self-Attention and Convolutional Layers. CoRR abs/1911.03584 (2019) - 2018
- [j5]Chen Avin, Alexandr Hercules, Andreas Loukas, Stefan Schmid:
rDAN: Toward robust demand-aware network designs. Inf. Process. Lett. 133: 5-9 (2018) - [j4]Francesco Grassi, Andreas Loukas, Nathanaël Perraudin, Benjamin Ricaud:
A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs. IEEE Trans. Signal Process. 66(3): 817-829 (2018) - [c22]Andreas Loukas, Pierre Vandergheynst:
Spectrally Approximating Large Graphs with Smaller Graphs. ICML 2018: 3243-3252 - [c21]Lionel Martin, Andreas Loukas, Pierre Vandergheynst:
Fast Approximate Spectral Clustering for Dynamic Networks. ICML 2018: 3420-3429 - [i13]Andreas Loukas, Pierre Vandergheynst:
Spectrally approximating large graphs with smaller graphs. CoRR abs/1802.07510 (2018) - [i12]Andreas Loukas:
Graph reduction by local variation. CoRR abs/1808.10650 (2018) - [i11]Elvin Isufi, Andreas Loukas, Nathanaël Perraudin, Geert Leus:
Forecasting Time Series with VARMA Recursions on Graphs. CoRR abs/1810.08581 (2018) - 2017
- [j3]Elvin Isufi, Andreas Loukas, Andrea Simonetto, Geert Leus:
Autoregressive Moving Average Graph Filtering. IEEE Trans. Signal Process. 65(2): 274-288 (2017) - [j2]Elvin Isufi, Andreas Loukas, Andrea Simonetto, Geert Leus:
Filtering Random Graph Processes Over Random Time-Varying Graphs. IEEE Trans. Signal Process. 65(16): 4406-4421 (2017) - [c20]Andreas Loukas, Elvin Isufi, Nathanaël Perraudin:
Predicting the evolution of stationary graph signals. ACSSC 2017: 60-64 - [c19]Vassilis Kalofolias, Andreas Loukas, Dorina Thanou, Pascal Frossard:
Learning time varying graphs. ICASSP 2017: 2826-2830 - [c18]Nathanaël Perraudin, Andreas Loukas, Francesco Grassi, Pierre Vandergheynst:
Towards stationary time-vertex signal processing. ICASSP 2017: 3914-3918 - [c17]Elvin Isufi, Andreas Loukas, Geert Leus:
Autoregressive moving average graph filters a stable distributed implementation. ICASSP 2017: 4119-4123 - [c16]Claudio Martella, Dionysios Logothetis, Andreas Loukas, Georgos Siganos:
Spinner: Scalable Graph Partitioning in the Cloud. ICDE 2017: 1083-1094 - [c15]Andreas Loukas:
How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices? ICML 2017: 2228-2237 - [i10]Elvin Isufi, Andreas Loukas, Andrea Simonetto, Geert Leus:
Filtering Random Graph Processes Over Random Time-Varying Graphs. CoRR abs/1705.00442 (2017) - [i9]Francesco Grassi, Andreas Loukas, Nathanaël Perraudin, Benjamin Ricaud:
A Time-Vertex Signal Processing Framework. CoRR abs/1705.02307 (2017) - [i8]Chen Avin, Alexandr Hercules, Andreas Loukas, Stefan Schmid:
Towards Communication-Aware Robust Topologies. CoRR abs/1705.07163 (2017) - 2016
- [c14]Elvin Isufi, Andreas Loukas, Andrea Simonetto, Geert Leus:
Separable autoregressive moving average graph-temporal filters. EUSIPCO 2016: 200-204 - [c13]Andreas Loukas, Damien Foucard:
Frequency analysis of time-varying graph signals. GlobalSIP 2016: 346-350 - [c12]Marco Cattani, Andreas Loukas, Marco Zimmerling, Marco Zuniga, Koen Langendoen:
Staffetta: Smart Duty-Cycling for Opportunistic Data Collection. SenSys 2016: 56-69 - [c11]Chen Avin, Andreas Loukas, Maciej Pacut, Stefan Schmid:
Online Balanced Repartitioning. DISC 2016: 243-256 - [i7]Andreas Loukas, Damien Foucard:
Frequency Analysis of Temporal Graph Signals. CoRR abs/1602.04434 (2016) - [i6]Elvin Isufi, Andreas Loukas, Andrea Simonetto, Geert Leus:
Distributed Time-Varying Graph Filtering. CoRR abs/1602.04436 (2016) - [i5]Nathanaël Perraudin, Andreas Loukas, Francesco Grassi, Pierre Vandergheynst:
Towards stationary time-vertex signal processing. CoRR abs/1606.06962 (2016) - [i4]Andreas Loukas, Nathanaël Perraudin:
Predicting the evolution of stationary graph signals. CoRR abs/1607.03313 (2016) - [i3]Andreas Loukas, Nathanaël Perraudin:
Stationary time-vertex signal processing. CoRR abs/1611.00255 (2016) - 2015
- [b1]Andreas Loukas:
Distributed Graph Filters. Delft University of Technology, Netherlands, 2015 - [j1]Andreas Loukas, Andrea Simonetto, Geert Leus:
Distributed Autoregressive Moving Average Graph Filters. IEEE Signal Process. Lett. 22(11): 1931-1935 (2015) - [c10]Elvin Isufi, Andrea Simonetto, Andreas Loukas, Geert Leus:
Stochastic graph filtering on time-varying graphs. CAMSAP 2015: 89-92 - [c9]Andreas Loukas, Marco Cattani, Marco Zuniga, Jie Gao:
Graph scale-space theory for distributed peak and pit identification. IPSN 2015: 118-129 - [i2]Andreas Loukas, Andrea Simonetto, Geert Leus:
Distributed Autoregressive Moving Average Graph Filters. CoRR abs/1508.05808 (2015) - [i1]Chen Avin, Andreas Loukas, Maciej Pacut, Stefan Schmid:
Online Balanced Repartitioning. CoRR abs/1511.02074 (2015) - 2014
- [c8]Andreas Loukas, Marco Zuniga, Ioannis Protonotarios, Jie Gao:
How to identify global trends from local decisions? Event region detection on mobile networks. INFOCOM 2014: 1177-1185 - [c7]Marco Cattani, Marco Zuniga, Andreas Loukas, Koen Langendoen:
Lightweight neighborhood cardinality estimation in dynamic wireless networks. IPSN 2014: 179-189 - [c6]Yunus Durmus, Andreas Loukas, Ertan Onur, Koen Langendoen:
Sybil-Resistant Meta Strategies for the Forwarder's Dilemma. SASO 2014: 90-99 - 2013
- [c5]Andreas Loukas, Marco Zuniga, Matthias Woehrle, Marco Cattani, Koen Langendoen:
Think globally, act locally: on the reshaping of information landscapes. IPSN 2013: 265-276 - [c4]Andreas Loukas, Matthias Woehrle, Marco Zuniga, Koen Langendoen:
Fairness for All, Rate Allocation for Mobile Wireless Networks. MASS 2013: 154-162 - 2012
- [c3]Andreas Loukas, Matthias Woehrle, Philipp M. Glatz, Koen Langendoen:
On distributed computation of information potentials. FOMC 2012: 5 - 2011
- [c2]Andreas Loukas, Matthias Woehrle, Koen Langendoen:
On mining sensor network software repositories. SESENA@ICSE 2011: 25-30
2000 – 2009
- 2008
- [c1]Orestis Akribopoulos, Dimitrios Bousis, Dionysios Efstathiou, Haris Koutsouridis, Marios Logaras, Andreas Loukas, Alexandros Nafas, Georgios Oikonomou, Irini Thireou, Nikos Vasilakis, Panagiotis C. Kokkinos, Georgios Mylonas, Ioannis Chatzigiannakis:
A software platform for developing multi-player pervasive games using small programmable object technologies. MASS 2008: 544-546
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-05 21:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint