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Abstract—Graph-based methods for signal processing have
shown promise for the analysis of data exhibiting irregular
structure, such as those found in social, transportation, and
sensor networks. Yet, though these systems are often dynamic,
state-of-the-art methods for signal processing on graphs ignore
the dimension of time, treating successive graph signals indepen-
dently or taking a global average. To address this shortcoming,
this paper considers the statistical analysis of time-varying graph
signals. We introduce a novel definition of joint (time-vertex)
stationarity, which generalizes the classical definition of time sta-
tionarity and the more recent definition appropriate for graphs.
Joint stationarity gives rise to a scalable Wiener optimization
framework for joint denoising, semi-supervised learning, or more
generally inversing a linear operator, that is provably optimal.
Experimental results on real weather data demonstrate that
taking into account graph and time dimensions jointly can yield
significant accuracy improvements in the reconstruction effort.

I. INTRODUCTION

Whether examining opinion dichotomy in social net-
works [1], how traffic evolves in the roads of a city [2], or
neuronal activation patterns present in the brain [3], much
of the high-dimensional data one encounters exhibit complex
non-euclidean properties. This realization has been the driving
force behind recent efforts to re-invent the mathematical mod-
els used for data analysis. Within the field of signal processing,
one of the main research thrusts has been to extend harmonic
analysis to graph signals, i.e., signals supported on the vertices
of irregular graphs. The key breakthrough in the field has
been the introduction of a notion of frequency appropriate for
graph signals and of the associated graph Fourier transform
(GFT). Because it enables us to process signals taking into
account complex relations between variables, the GFT has
lead to advances in problems such as denoising [4] and semi-
supervised learning [5], [6].

Yet, state-of-the-art graph frequency based methods often
fail to produce useful results when applied to real datasets. One
of the main reasons underlying this shortcoming is that they
ignore the time dimension, for example by treating successive
signals independently or performing a global average [3],
[7], [8]. On the contrary, many of the systems to which
graph signal processing is applied to are dynamic. Consider
for instance a sensor network, and suppose that we want to
infer the weather conditions on a mountain given temperature
measurements from a small set of weather stations. Ap-
proaches that do not take into account the temporal evolution
of weather will be biased by seasonal variations and unable to
provide insights about transient phenomena. Moreover, when
the weather dynamics are slow and predictable, taking into
account the time dimension, e.g., by imposing a smoothness
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prior, can yield accuracy improvements in the reconstruction
effort.

Motivated by this need, this paper considers the statis-
tical analysis of time-evolving graph signals. Our results
are inspired by the recent introduction of a joint temporal
and graph Fourier transform (JFT), a generalization of GFT
appropriate for time-varying graph signals [9], and the re-
cent generalization of stationarity for graphs [7], [10], [11].
Our main contribution is a novel definition of time-vertex
(wide-sense) stationarity, or joint stationarity for short. We
believe that the proposed definition is natural, at it elegantly
generalizes existing definitions of stationarity in the time and
vertex domains. We show that joint stationarity carries along
important properties classically associated with stationarity.
Moreover, our definition leads to a Wiener framework for solv-
ing denoising and interpolating time-varying graph signals,
that yields superior performance compared to state-of-the-art
methods in time or vertex domains. The proposed framework
is composed out of two key components: a scalable joint
power spectral density estimation method, and an optimization
framework suitable for deconvolution under additive error. The
latter is shown to be optimal in the mean-squared error sense.
Experiments with a real weather dataset illustrate the superior
performance of our method, ultimately demonstrating that joint
stationarity is a useful assumption in practice.

II. PRELIMINARIES

Our objective is to model and predict the evolution of
graph signals, i.e., signals supported on the vertices V =
{v1, v2, . . . , vN} of a weighted undirected graph G =
(V, E ,WG), with E the set of edges and WG the weighted
adjacency matrix. A more convenient matrix representa-
tion of G is the (combinatorial1) Laplacian matrix LG =
diag(WG1N )−WG, where 1N is the all-ones vector of size
N , and diag(WG1N ) is the diagonal degree matrix.

Harmonic vertex analysis. In the context of graph signal
processing, the importance of the Laplacian matrix stems from
it giving rise to a graph-specific notion of frequency. The
Graph Fourier Transform (GFT) of a graph signal x ∈ RN
is defined as GFT{x} = U∗Gx, where UG is the eigenvector
matrix of LG and thus LG = UGΛGU

∗
G. The GFT allows

us to extend filtering to graphs [13], [14], [15]. Filtering a
signal x with a graph filter h(LG) corresponds to element-
wise multiplication in the spectral domain

h(LG)x
∆
= GFT-1{h(ΛG) ◦ GFT{x}} = UGh(ΛG)U∗G x,

1Though we use the combinatorial Laplacian in our presentation, our results
are applicable to any positive semi-definite matrix representation of a graph
or to the recently introduced shift operator [12].

ar
X

iv
:1

60
6.

06
96

2v
1 

 [
cs

.L
G

] 
 2

2 
Ju

n 
20

16



2

where the scalar function h : R+ 7→ R, referred to as the graph
frequency response, has been applied to each diagonal entry of
ΛG. It is often convenient to represent the diagonal of matrix
h(ΛG) as a vector, in which case we write h = diag(h(ΛG)).
The notation U∗G denotes the transposed complex conjugate of
UG, Uᵀ

G the transpose of UG, and ŪG the complex conjugate
of UG. We will also use the notion of graph localization [15],
[7], a generalization of the translation operator used in the
classical setting appropriate for graphs2. Localizing a filter
with frequency response h onto vertex vi reads

T Gi h
∆
= h(LG) δi, (1)

where δi is a Kronecker delta centered at vertex vi. For a
sufficiently regular function h, this operation localizes the filter
around vi [15, Theorem 1 and Corollary 2]. Evaluated at the
i2-th vertex, the above expression becomes

T Gi1 h(i2) =

N∑
n=1

h(λn) ūn(i1)un(i2), (2)

where we use the notation un(i) = [UG]i,n and λn = [ΛG]n,n.
Note that in the expression above, the localization operator
takes precedence over indexing and T Gi1 h(i2) = [T Gi1 h](i2);
this convention is used throughout this paper. The concept of
localization is intimately linked to that of translation in the
time domain. If T Tτ h is the localization operator taken on a
cycle graph of T vertices (representing time), localization is
equivalent to translation

T Tτ h(t) = T T0 h(t− τ), for all t, τ = 1, . . . , T. (3)

In simple words, for a cyclic graph, the localization operator
computes the inverse Fourier transform of the frequency
response h, and translates it to vertex vi. We can verify this
using the fact that the complex exponential Fourier basis form
the eigenvector set of all cyclic graphs [16], which together
with (2) implies that

T Tt1 h(t2) =
1

T

T∑
τ=1

h(ωτ )e−2πj
(τ−1)t1

T e2πj
(τ−1)t2

T

=
1

T

T∑
τ=1

h(ωτ ) e2πj
(τ−1)(t2−t1)

T = T T0 h(t2 − t1). (4)

Above T T0 h = UTh is the inverse Fourier transform of h and
UT is the orthonormal Fourier basis. In the case of irregular
graphs, localization differs further from translation because
the shape of the localized filter adapts to the graph and varies
as a function of its topology. Additional insights about the
localization operator can be found in [15], [13], [17], [7].

Harmonic time-vertex analysis. Suppose that a graph signal
xt is sampled at T successive regular intervals of unit length.
The time-varying graph signal X = [x1,x2, . . . ,xT ] ∈
RN×T is then the matrix having graph signal xt as its t-
th column. Equivalently, X =

[
x1,x2, . . . ,xN

]ᵀ
holds N

2Stationarity is classically defined as the invariance of statistical moments of
a signal with respect to translation. This definition however cannot be directly
generalized to graphs, which do not possess regular structure and thus lack
of an isometric translation operator.

temporal signals xi ∈ RT , one for each vertex vi. Throughout
this paper, we denote as x = vec(X) (without subscript) the
vectorized representation of the matrix X .

The frequency representation of X is given by the joint
(time-vertex) Fourier transform (or JFT for short)

JFT{X} = U∗GXŪT , (5)

where, once more, UG is the graph Laplacian eigenvector ma-
trix, whereas ŪT is the complex conjugate of the DFT matrix
divided by 1/

√
T . In fact, matrix UT is the eigenvector matrix

of the lag operator (or Laplacian matrix) LT = UT ΛT U
∗
T .

Denote by Ω the diagonal matrix of angular frequencies (i.e.,
Ωtt = ωt = 2πt/T ). In case LT is the lag operator, we have
ΛT = e−jΩ, where j =

√
−1. When LT is the Laplacian,

we have ΛT = real
(
I − e−jΩ

)
. Expressed in vector form,

the joint Fourier transform becomes JFT{x} = U∗J x, where
UJ = UT ⊗UG is unitary, and operator (⊗) denotes the kro-
neker product. The inverse joint Fourier transforms in matrix
and vector form are, respectively, JFT-1{X} = UGXU

ᵀ
T and

JFT-1{x} = UJx. For an in-depth discussion of JFT and its
properties, we refer the reader to [9].

Leveraging the definition of the JFT, filtering and localiza-
tion can also be extended to the joint (time-vertex) domain. A
joint filter h(LJ) is a function defined in the joint spectral
domain h : R+ × R 7→ R that is evaluated at the graph
eigenvalues λG and the angular frequencies ω. The output of
a joint filter is

h(LJ)x
∆
= UJ h(ΛG,Ω)U∗J x, (6)

where h(ΛG,Ω) is a NT × NT diagonal matrix with
[h(ΛG,Ω)]k,k = h(λn, ωτ ) and k = N(τ − 1) + n. Equiv-
alently, if we define the matrix H of dimension N × T as
Hn,τ = h(λn, ωτ ) for every graph frequency λn and temporal
frequency ωτ , we have

h(LJ)x = vec
(
JFT-1{H ◦ JFT{X})}

)
, (7)

with (◦) being the element-wise multiplication (Hadamard
product). In an analogy to (1), we define the joint localization
operator as

T Ji,t h
∆
= mat(h(LJ) (δt ⊗ δi)) (8)

= JFT-1{H ◦ JFT{δiδᵀt })} (9)

where mat(·) is the matricization operator, such that
mat(vec(X)) = X . In order to link (8) with graph localization
(1) and the classical translation operator, we observe the
following relations

T Ji1,t1 h(i2, t2) =
1

T

N,T∑
n=1
τ=1

h(λn, ωk)ūn(i1)un(i2)e2πj
(τ−1)(t2−t1)

T

= T Ji1,0 h(i2, t2 − t1) (10)

=
1

T

N∑
n=1

[
T∑
τ=1

h(λn, ωτ )e2πj
(τ−1)(t2−t1)

T

]
ūn(i1)un(i2)

=

N∑
n=1

[
T Tt1 Hn,·

]
(t2) ūn(i1)un(i2) (11)
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=
1

T

T∑
τ=1

[
N∑
n=1

h(λn, ωτ )ūn(i1)un(i2)

]
e2πj

(τ−1)(t2−t1)
T

=
1

T

T∑
τ=1

[
T Gi1 H·,τ

]
(i2) e2πj

(τ−1)(t2−t1)
T . (12)

The above equations provide three key insights about the joint
localization operator:

1) From (10), we observe that the localization operator
performs a translation along the time dimension.

2) From (11), it follows that joint localization consist of
first localizing (translating) independently in time each
line of the matrix H and then localizing independently
on the graph each column of the resulting matrix. Joint
localization is thus equivalent to a successive application
of a graph and and a time localization operator.

3) Furthermore, according to (12), the successive localiza-
tion in time and graph can be performed in any order.

When the filter is separable, i.e., when the joint frequency
response can be written as the product of a frequency response
defined solely in the vertex domain and one in the time domain
h(λ, ω) = h1(λ)h2(ω), the joint localization is simply

h(LJ) (δt ⊗ δi) = vec(h(LG)(δt ⊗ δᵀi )h(LT )) . (13)

Nevertheless, for this work, we assume that the filter is not
separable as it is a too restrictive hypothesis.

III. JOINT TIME-VERTEX STATIONARITY

Let X be a discrete multivariate stochastic process with
finite number of time-steps T that is indexed by vertex vi
and time t. We refer to such processes as joint time-vertex
processes, or joint processes for short.

To put our results in context, let us first review the estab-
lished definitions of stationarity over time and vertex domains,
respectively. Our definition will emerge us a consequence of
both. We note that, although our exposition is self-contained,
the reader will benefit from familiarizing with previous work
on stationarity on graphs [7].

Definition 1 (Time stationarity). A joint process X is Time
Wide-Sense Stationary (TWSS), if and only if the following two
properties hold independently for each vertex vi:

1) The expected value is constant over the time domain

E
[
xi
]

= ci1T .

2) There exists a function γi, for which

[Σxi ]t,· =
[
E
[
xixi

∗]− E
[
xi
]
E
[
xi
∗]]

t,·
= T Tt γi

Function γi is the autocorrelation function of signal xi in the
Fourier domain, and is also referred to as Time Power Spectral
Density (TPSD).

We remind the reader that on a cyclic graph, localizing
the TPSD is equivalent to translating the autocorrelation.
Thus, using (9) we recover the classical definition, where the
autocorrelation function depends only on the time difference:
[Σxi ]t,τ = T T0 γi(t−τ). Simply put, assuming time stationar-
ity is equivalent to asserting that the statistics of the two first

moments are independent of the time. We also observe that the
TPSD is the Fourier transform of the autocorrelation, agreeing
with the Wiener-Khintchine Theorem [18]. To summarize,
TPSD encodes the statistics of the signal in the spectral
domain.

This consideration allows us to generalize the concept of
stationarity to graph signals. Please refer to the work of
Perraudin and Vandergheynst [7] for a more detailled study.
We express a variation of their definition in the following.

Definition 2 (Vertex stationarity). A joint process X =
[x1x2 . . .xT ] is called Vertex Wide-Sense (or second order)
Stationary (VWSS), if and only if the following two properties
hold independently for each time t:

1) The expected value is in the null space of the Laplacian

LGE [xt] = 0N .

2) There exists a graph filter st(LG), for which

[Σxt ]i,· = [E [xtx
∗
t ]− E [xt]E [x∗t ]]i,· = T Gi st .

Function st is the autocorrelation function of signal xt in the
graph Fourier domain and is also referred to as Vertex Power
Spectral Density (VPSD).

Considering that the null space of LT in both the normal-
ized and the combinatorial case is the span of the constant
eigenvector 1T , the first condition of the above definition is
analogous to the corresponding condition of the time stationar-
ity definition. Moreover, the condition for the second moment
is a natural generalization of the second condition of time
stationarity where, instead of imposing translation invariance,
we suppose invariance under the localization operator. This
second condition is in fact equivalent to a generalization of
the Wiener-Khintchine theorem and implies that Σxt is jointly
diagonalizable with LG (in TWSS the covariance is Toeplitz
and thus also diagonalizable with the DFT matrix UT ).

We now unify the TWSS and GWSS in order to leverage
both the time and vertex domain statistics.

Definition 3 (Joint stationarity). A process X is called Jointly
(or time-vertex) Wide-Sense Stationary (JWSS), if and only if
its vector form x = vec(X) satisfies the following properties:

1) The expected value is in the null space of the Laplacian

LJE [x] = 0NT .

2) There exists a joint filter h(LJ), for which

[Σx]k,· = [E [xx∗]− E [x]E [x∗]]k,· = vec
(
T Ji,t h

)
,

where k = N(t− 1) + i.
Function h is the autocorrelation function of signal x in the
joint Fourier domain and is also referred to as time-vertex
power spectral density or Joint Power Spectral Density (JPSD)
for short.

The definition above is in fact equivalent to stating that the
mean is constant, and the covariance matrix Σx is jointly di-
agonalizable with the joint Laplacian LJ . The latter statement
is (also) a generalization the Wiener-Khintchine theorem and
is proven next.
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Theorem 1. A process X is JWSS if and only if 1) LJE [x] =
0NT , and 2) its covariance matrix is jointly diagonalizable by
the joint Fourier basis UJ .

Proof: To prove an equivalence relation between the
two definitions (i.e., the JWSS definition and the one stated
by the theorem) we will prove a one-to-one equivalence
between their respective conditions. Clearly the first condi-
tions of both definitions are identical. The second condition
[Σx]k,· = vec

(
T Ji,t h

)
of the joint stationarity definition

together with (8) assert that the covariance being a joint
filter Σx = h(LJ) for some function h. We therefore have
that Σx = UJh(ΛG,Ω)U∗J with h(ΛG,Ω) diagonal, which
implies our claim.

Interestingly, assuming joint stationarity is equivalent to
assuming stationarity in both domains at the same time.

Theorem 2. If a joint process X is JWSS, then it is both
TWSS and GWSS.

Proof: It is straightforward to see that LJE [x] = 0NT
if and only if both LTE [xt] = 0N and LGE

[
xi
]

= 0T ,
hold for all t and i. We still need to show that the second-
order moment properties of TWSS and VWSS are equivalent
to that of JWSS. If a process is joint stationary, then from (12)
we have that, for each vertex vi

[Σxi ]t1,t2 = [T Ji,t1 h](i, t2)

=
1

T

T∑
τ=1

[
T Gi H·,τ

]
(i) e2πj

(τ−1)(t2−t1)
T

which is equivalent to asserting that xi is stationary in time
with TPSD γi(ωτ ) = [T Gi H·,τ ](i). Similarly, using (11), we
find that for each time t

[Σxt ]i1,i2 = [T Ji1,t h](i2, t) =

N∑
n=1

[
T Tt Hn,·

]
(t) ūn(i1)un(i2)

meaning that process xt is stationary with VPSD st(λn) =
[T Gt Hn,· ](t).

Example 1 (White i.i.d. noise). White i.i.d. noise w ∈ RNT
is JWSS for any graph. Indeed, the first moment E [w] is
constant for any time and vertex. Moreover, due to being an
identity matrix, the covariance of w is diagonalized by the
joint Fourier basis of any graph Σw = I = UJIU

∗
J . This

last equation tells us that the JPSD is constant, which implies
that similar to the classical case, white noise contains all joint
(time-vertex) frequencies.

An interesting property of JWSS processes is that station-
arity is preserved through a filtering operation.

Theorem 3. When a joint filter f(LJ) is applied to a
JWSS process X , the result Y remains JWSS with mean
f(0, 0)E [X] and JPSD that satisfies

hY (λ, ω) = f2(λ, ω) · hX(λ, ω). (14)

Proof: The output of a filter f(LJ) can be written in
vector form as y = f(LJ). If the input signal x is JWSS, we
can confirm that the first moment of the filter output is zero,

E [f(LJ)x] = f(LJ)E [x] = f(0, 0)E [x]. The last equality
follows from the fact that by definition E [x] is in the null
space of LJ . The computation of the second moment gives

Σy = E
[
f(LJ)x (f(LJ)x)

∗]− E [h(LJ)x]E [(f(LJ)x)∗]

= f(LJ)E [xx∗] f(LJ)− f(LJ)E [x]E [x∗] f(LJ)∗

= f(LJ)Σxf(LJ)∗

= UJ
(
f2(ΛG,Ω)hX(ΛG,Ω)

)
U∗J ,

which is, from Theorem 1, JWSS as it is diagonalizable by
UJ .

As the following diagram illustrates, Theorem 3 provides
a simple way to artificially produce JWSS signals with a
prescribed PSD f2 by simply filtering white noise with the
joint filter f(LJ).

The resulting signal will be stationary with PSD f2 and this
holds for white noise abiding to any distribution (not only
Gaussian). In the sequel, we assume for simplicity that the
signal is centered at 0, i.e., E [x] = 0 · 1.

Whenever it is clear from the context, in the following we
simply refer to the TPSD, VPSD, and JPSD as PSD.

IV. JOINT POWER SPECTRAL DENSITY ESTIMATION

As the JPSD is central in our method, we need a reliable
way to compute it. Since we take into account the correlation
both in the time and in the vertex domain, the actual size of
the covariance matrix Σx is NT × NT . In many cases, this
matrix is not computable nor can be even stored. Additionally,
if attempt to estimate it using classical covariance estimation
methods, the number of samples necessary for obtaining a
reasonable estimation accuracy can be prohibitive. The number
of samples needed for obtaining a good sample covariance
matrix of an n-dimensional process is generally not known,
but for distributions with finite second moment it has been
shown to be O(n log n) by Rudelson [19], [20]. In our case,
this theorem implies that we need O(NT log (NT )) signals, of
NT variables each, to obtain a good estimate of the statistics
of a joint process.

To circumvent this issue, we leverage the time-vertex struc-
ture of the data. The basic idea behind our approach stems
from two established methods used to estimate the TPSD of a
temporal signal, namely Bartlett’s and Welch’s methods [21],
which are summarized below.

TPSD estimation methods. In Bartlett’s method, the signal
(timeseries) is first cut into equally sized segments without
overlap. Then, the Fourier transform of each segment is
computed. Finally, the PSD is obtained by averaging over
segments the squared amplitude of the Fourier coefficients.
Welch’s method [22] is a generalization that works with
overlapping segments. We can see the TPSD estimation of both
methods as the averaging over time of the squared coefficients
of a Short Time Fourier Transform (STFT). We remind the
reader that STFT is used to extract the frequency content of a
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temporal signal at a given time, by first selecting a part of the
signal using a window and then compute the discrete Fourier
transform. More concretely, for a discrete signal s of length
T , the circular discrete sampled STFT of s at the m-th (out
of M ) frequency band, and under window g is

STFT{s}(k,m)
∆
=

T∑
t=1

s(t) g (tk) e−2πj
(t−1)(m−1)

M ,

where tk = mod(t− a(k − 1), T ) + 1, scalar a is the shift
in time between two successive windows [23, equation 1],
and mod(t, T ) finds the remainder after division by T i.e.,
mod(t, T ) = t − T b tT c. Note that k = 0, 1, . . . , bTa c − 1
is the time band centered at ka and that m = 1, . . . ,M is
the frequency band index. For additional insights about this
transform, we refer the reader to [24], [25].

Joint PSD estimation. Based on the idea that the Bartlett
method is an average of STFT coefficients, we propose to use
the GFT of the STFT as a tool to estimate the joint PSD.
Consider a time window g and a time-vertex signal X . We
first define the coefficients’ tensor as

Cn,k,m
∆
=

N∑
i=1

[UG]i,n STFT{xi}(k,m)

=

N∑
i=1

[UG]i,n

T∑
t=1

Xi,t g(tk) e−2πj
(t−1)(m−1)

M .

A usual parameter for M is the support size of g. Then, for
half-overlapping windows, we set a to M/2. For any discrete
vertex frequency λn and time frequency ωm = 2πm/M , our
JPSD estimator is

h̃ (λn, ωm)
∆
=

a

T‖g‖22

bT/ac−1∑
k=0

C2
n,k,m (15)

In order to get an estimate of h at ω 6= ωm, we interpo-
late between the known points. Alternatively, with sufficient
computation power, one may set M = T . Though alternative
choices are possible, we suggest using the iterated sine window

g(t) = sin
(

0.5π cos (πt/M)
2
)
χ[−M/2,M/2](t),

where χ[−M/2,M/2](t) = 1 if t ∈ [−M/2,M/2] and 0
otherwise, as it turns the STFT into a tight operator for
M = 2a. We defer an error analysis of the estimator for the
longer version of this paper.

Other PSD estimation methods. In case T � N , two
problems arise with the aforementioned method. First, we
cannot compute the graph Fourier basis UG, and second the
number of sample in time might not be sufficient to average
over time. To circumvent this problem, one can do the average
over the graph vertex using a technique similar to the PSD
estimator of [7]. This technique will be studied in future work.

V. OPTIMIZATION FRAMEWORK

We can leverage our definition of stationarity to generalize
the optimization framework of [7], useful for denoising, inter-
polating, and more generally deconvoling stationary processes.

Concretely, suppose that our measurements y are generated by
a linear model

y = Ax+w, (16)

where, as in the rest of this document, x and y are the
vectorized version of X,Y . Further, suppose that the JPSD
of x is hX , whereas the noise w is zero mean has JPSD hW
and may follow any distribution. Matrix A is a general linear
operator, not assumed to be jointly diagonalizable with LJ .

Tikhonov-regularization. Whet the signal x varies smoothly
on the graph, i.e is low frequency based, the classical ap-
proach of finding x from y, consists of solving the following
optimization scheme, commonly referred to as Tikhonov-
regularization

arg min
x

‖Ax− y‖22 + αx∗LJx (17)

Notice that the prior above is separable into two terms

x∗LJx = tr(X∗LGX) + tr(XLTX∗) . (18)

As a result, optimization problem (17) can only encode a
particular joint time-vertex structure. Additionally this scheme
requires the parameter α to be tuned and does not take into
account the statistical structure of the signals.

Wiener optimization framework. We instead propose to
recover x as the solution of the Wiener optimization problem

ẋ = arg min
x

‖Ax− y‖22 + ‖f(LJ)(x− E [x])‖22, (19)

where f(λ, ω) are the joint Fourier penalization weights,
defined as

f(λ, ω)
∆
=

∣∣∣∣∣
√
hW (λ, ω)

hX(λ, ω)

∣∣∣∣∣ =
1√

SNR(λ, ω)
. (20)

In the noise-less case, one alternatively solves the problem

ẋ = arg min
x

‖h−
1
2

X (LJ)x‖22, subject to Ax = y. (21)

Intuitively, the weight f(λ, ω) heavily penalizes frequencies
associated with low SNR and vice-versa. Formally, we can
show that:
• If X is a Gaussian process, then the solution of Prob-

lem (19) coincides with a MAP estimator.
• If A is a masking operator, then the solution of Prob-

lem (19) coincides with the minimum mean square error
linear estimator.

• If A = a(LJ) is a joint filter, then the solution of
Problem (19) is a joint Wiener filter [9].

The proofs are generalizations of Theorems 3,4 and 5 of [7].

Comparison to the MAP estimator. There are three main
advantages of the Wiener optimization framework over a
Gaussian MAP estimator based on an empirical covariance
matrix estimate. Firstly, assuming stationarity allows for a
more robust estimate of the covariance matrix. This is crucial
in this problem since we typically expect the number of
variable N × T to be large and an empirical estimate of
the covariance matrix to be expensive. Secondly, storing the
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covariance might not be possible as it consists of O((NT )2)
elements. On the contrary, the JPSD hX has only NT ele-
ments. Finally, thanks to proximal splitting methods, we can
derive an algorithm for solving Problem (19) that requires
only the application of A and spectral graph filtering. On the
contrary the classical Gaussian MAP estimator requires the
inverse of a large part of the covariance matrix.

VI. EXPERIMENTS

We apply our methods to a weather dataset depicting the
temperature of 32 weather stations, over a span of 31 days. Our
experiment aims to show that 1) joint stationarity is a useful
model, even in datasets which may violate the strict conditions
of our definition, and 2) that time-vertex stationarity can yield
a significant increase in denoising and recovery accuracy, as
compared to time- or vertex-based methods, on a real dataset.

Experimental setup. The French national meteorological
service has published in open access a dataset3 with hourly
weather observations collected during the Month of January
2014 in the region of Brest (France). The graph is built from
the coordinates of the weather stations by connecting all the
neighbors in a given radius with a weight function [WG]i1,i2 =
exp(−k d(i1, i2)2), where d(i1, i2) is the euclidean distance
between the stations i1 and i2. Parameter k is adjusted to
as obtain an average degree around 3 (k, however, is not a
sensitive parameter). As sole pre-processing, we remove the
mean (over time and stations) of the temperature. This is
equivalent to removing the first moment.

The dataset, which consisted of a total of T = 744
timesteps, was split into two parts of size ρT and (1 − ρ)T ,
respectively. We use the first part of the dataset to estimate the
PSD and the second to quantify the joint filter performance.
We compare our joint method to the state-of-the-art wiener
filters for the disjoint time/vertex domains, which are known
to outperform non-statistics based methods, such as graph/time
Tikhonov and graph/time TV. To highlight the benefit of the
joint approach, in the disjoint cases we use the entire dataset
to estimate the PSD (for ρ = 1 the same data are used for
both training and testing).

Denoising. For this experiment, we add Gaussian random
noise to the data and remove the noise thanks to Wiener
filter (A = I in problem (19)). The result is displayed
in Figure 1. Joint stationarity outperforms time or vertex
stationarity especially when the noise level is high. Indeed,
joint stationarity allows the estimator to average over more
samples. In order to obtain a good denoising, we need a
good JPSD estimation. The effect of the dataset size can be
observed through the parameter ρ, with larger ρ resulting in
higher accuracy. Especially for large input SNR, the joint
approach becomes particularly meaningful as it outperforms
other approaches, even when a very small portion of the data
is used for JPSD estimation (whereas the time and vertex based
methods ρ = 1, meaning that they use the entire dataset for
PSD estimation).

3Access to the raw data is possible directly from https://donneespubliques.
meteofrance.fr/donnees libres/Hackathon/RADOMEH.tar.gz
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Fig. 1: Experiments on Molene temperatures. The joint ap-
proach becomes especially meaningful when the available data
are very noisy or are few. The recovery performance is slightly
improved when a larger percentage ρ of data are available for
training.

Recovery. We also consider a recovery problem, where a given
percentage of entries of matrix X is missing. Figure 1 depicts
the recovery error obtained using problem (21). Again, we
observe a significant improvement over competing methods.
This improvement is achieved because the joint approach
leverages the correlation both in the time and in the vertex
domain: each random variable in a TWSS or VWSS process
is dependent on only T − 1 or N − 1 other random variables,
respectively (rather than NT−1 as in the joint case), implying
a higher recovery variance.

VII. CONCLUSION

This paper proposed a novel definition of (wide-sense)
stationarity appropriate for time-varying graph signals. We
showed that joint stationarity possess a number of useful
properties, that are familiar from the classical setting. Based on
our definition, we proposed a Wiener optimization framework
and the accompanying PSD estimation method, which together
can be used to for solving the problem of inverting a rank-
deficient linear system under a jointly stationary input and
disturbance. The proposed optimization framework is optimal
in the mean-squared error sense and scales well with the
number of time samples. In our experiment with a weather
dataset, the joint approach was shown to yield a significant
benefit over disjoint statistical methods for signal denoising
and recovery.

The longer version of this paper will expand our analysis
and evaluate our approach in a larger set of experiments.
We will additionally make a detailed complexity analysis
and propose solutions to avoid the computationaly expensive

https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
https://donneespubliques.meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
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diagonalization of the graph Laplacian LG. We remark that
our simulations were done using the GSPBOX [26], the
UNLocBoX [27], and the LTFAT [23]. The code reproducing
all figures will be made available soon.
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