default search action
Filip Tavernier
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j14]Tuur Van Daele, Filip Tavernier:
Monolithic 230-VRMS-to-12-VDC AC-DC Converter at 9 mW/mm2 Enabled by a 31-325-VDC Input Range Capacitive Multi-Ratio DC-DC Converter. IEEE J. Solid State Circuits 59(4): 1067-1077 (2024) - [j13]Filip Tavernier, Danilo Manstretta, Ronan A. R. van der Zee:
Guest Editorial IEEE 2023 European Solid-State Circuits Conference. IEEE J. Solid State Circuits 59(7): 1979-1980 (2024) - 2023
- [b1]Athanasios T. Ramkaj, Marcel J. M. Pelgrom, Michiel S. J. Steyaert, Filip Tavernier:
Multi-Gigahertz Nyquist Analog-to-Digital Converters - Architecture and Circuit Innovations in Deep-Scaled CMOS and FinFET Technologies, 3. Springer 2023, ISBN 978-3-031-22708-0, pp. 1-256 - [j12]Tuur Van Daele, Filip Tavernier:
Fully Integrating a 400 V-to-12 V DC-DC Converter in High-Voltage CMOS. IEEE J. Solid State Circuits 58(3): 732-741 (2023) - [c27]Zongyuan Li, Filip Tavernier:
A 10 GHz Quadruple-Tail Comparator with Double Feedforward Paths and Minimal Delay Slope in 28 nm CMOS. ESSCIRC 2023: 205-208 - [c26]Tuur Van Daele, Filip Tavernier:
A Fully Integrated 230 VRMS-to-12 VDC AC-DC Converter Achieving 9 mW/mm2. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j11]Athanasios T. Ramkaj, Marcel J. M. Pelgrom, Michiel S. J. Steyaert, Filip Tavernier:
A 28 nm CMOS Triple-Latch Feed-Forward Dynamic Comparator With <27 ps / 1 V and <70 ps / 0.6 V Delay at 5 mV-Sensitivity. IEEE Trans. Circuits Syst. I Regul. Pap. 69(11): 4404-4414 (2022) - [c25]Tuur Van Daele, Filip Tavernier:
A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency. CICC 2022: 1-2 - [c24]Qiuyang Lin, Christina Avidikou, Filip Tavernier, Nick Van Helleputte:
Photoplethysmography (PPG) Sensor Circuit Design Techniques. CICC 2022: 1-8 - [c23]Bram Veraverbeke, Tim Thielemans, Tuur Van Daele, Filip Tavernier:
A 240V to 47.5 V Fully Integrated Switched-Capacitor Converter in GaN Achieving 62.6% Efficiency at 220 mW/mm2. PRIME 2022: 249-252 - [c22]Athanasios Ramkaj, Adalberto Cantoni, Gabriele Manganaro, Siddharth Devarajan, Michiel Steyaert, Filip Tavernier:
A 30GHz-BW < -57dB-IM3 Direct RF Receiver Analog Front End in 16nm FinFET. VLSI Technology and Circuits 2022: 100-101 - 2021
- [j10]Qiuyang Lin, Shuang Song, Roland Van Wegberg, Wim Sijbers, Dwaipayan Biswas, Mario Konijnenburg, Chris Van Hoof, Filip Tavernier, Nick Van Helleputte:
A 134 DB Dynamic Range Noise Shaping Slope Light-to-Digital Converter for Wearable Chest PPG Applications. IEEE Trans. Biomed. Circuits Syst. 15(6): 1224-1235 (2021) - [c21]Qiuyang Lin, Shuang Song, Roland Van Wegberg, Mario Konijnenburg, Dwaipayan Biswas, Chris Van Hoof, Filip Tavernier, Nick Van Helleputte:
A 28μW 134dB DR 2nd-Order Noise-Shaping Slope Light-to-Digital Converter for Chest PPG Monitoring. ISSCC 2021: 390-392 - 2020
- [j9]Athanasios T. Ramkaj, Juan Carlos Pena Ramos, Marcel J. M. Pelgrom, Michiel S. J. Steyaert, Marian Verhelst, Filip Tavernier:
A 5-GS/s 158.6-mW 9.4-ENOB Passive-Sampling Time-Interleaved Three-Stage Pipelined-SAR ADC With Analog-Digital Corrections in 28-nm CMOS. IEEE J. Solid State Circuits 55(6): 1553-1564 (2020) - [j8]Wouter Diels, Michiel Steyaert, Filip Tavernier:
1310/1550 nm Optical Receivers With Schottky Photodiode in Bulk CMOS. IEEE J. Solid State Circuits 55(7): 1776-1784 (2020) - [j7]Yifan Lyu, Filip Tavernier:
A 4-GS/s 39.9-dB SNDR 11.7-mW Hybrid Voltage-Time Two-Step ADC With Feedforward Ring Oscillator-Based TDCs. IEEE J. Solid State Circuits 55(7): 1807-1818 (2020) - [j6]Qiuyang Lin, Jiawei Xu, Shuang Song, Arjan Breeschoten, Mario Konijnenburg, Chris Van Hoof, Filip Tavernier, Nick Van Helleputte:
A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications. IEEE Trans. Biomed. Circuits Syst. 14(4): 800-810 (2020) - [c20]Yifan Lyu, Filip Tavernier:
A 1 GS/s Reconfigurable BW 2nd-Order Noise-Shaping Hybrid Voltage-Time Two-Step ADC Achieving 170.9 dB FoMS. VLSI Circuits 2020: 1-2 - [c19]Tim Thielemans, Filip Tavernier:
A 4V-0.55V Input Fully Integrated Switched-Capacitor Converter Enabling Dynamic Voltage Domain Stacking and Achieving 80.1% Average Efficiency. VLSI Circuits 2020: 1-2
2010 – 2019
- 2019
- [j5]Filipe D. Baumgratz, Carlos E. Saavedra, Michiel Steyaert, Filip Tavernier, Sergio Bampi:
A Wideband Low-Noise Variable-Gain Amplifier With a 3.4 dB NF and up to 45 dB Gain Tuning Range in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 66-II(7): 1104-1108 (2019) - [c18]Wouter Diels, Michiel Steyaert, Filip Tavernier:
Optical Receiver with Schottky Photodiode and TIA with High Gain Amplifier in 28nm Bulk CMOS. ESSCIRC 2019: 149-152 - [c17]Yifan Lyu, Filip Tavernier:
A 4-GS/s 39.9-dB SNDR 11.7-mW Hybrid Voltage-Time Two-Step ADC With Feed-Forward Ring Oscillator-Based TDCs. ESSCIRC 2019: 163-166 - [c16]Athanasios T. Ramkaj, Michiel S. J. Steyaert, Filip Tavernier:
A 13.5-Gb/s 5-mV-Sensitivity 26.8-ps-CLK-OUT Delay Triple-Latch Feedforward Dynamic Comparator in 28-nm CMOS. ESSCIRC 2019: 167-170 - [c15]Athanasios Ramkaj, Juan Carlos Pena Ramos, Yifan Lyu, Maarten Strackx, Marcel J. M. Pelgrom, Michiel Steyaert, Marian Verhelst, Filip Tavernier:
A 5GS/s 158.6mW 12b Passive-Sampling 8×-Interleaved Hybrid ADC with 9.4 ENOB and 160.5dB FoMS in 28nm CMOS. ISSCC 2019: 62-64 - [c14]Tuur Van Daele, Elly De Pelecijn, Tim Thielemans, Michiel Steyaert, Filip Tavernier:
A Fully-Integrated 6: 1 Cascaded Switched-Capacitor DC-DC Converter Achieving 74% Efficiency at 0.1W/mm2. PRIME 2019: 49-52 - [c13]Qiuyang Lin, Jiawei Xu, Shuang Song, Arjan Breeschoten, Mario Konijnenburg, Mingyi Chen, Chris Van Hoof, Filip Tavernier, Nick Van Helleputte:
A 196μW, Reconfigurable Light-to-Digital Converter with 119dB Dynamic Range, for Wearable PPG/NIRS Sensors. VLSI Circuits 2019: 58- - 2018
- [j4]Athanasios Ramkaj, Maarten Strackx, Michiel S. J. Steyaert, Filip Tavernier:
A 1.25-GS/s 7-b SAR ADC With 36.4-dB SNDR at 5 GHz Using Switch-Bootstrapping, USPC DAC and Triple-Tail Comparator in 28-nm CMOS. IEEE J. Solid State Circuits 53(7): 1889-1901 (2018) - [j3]Filipe D. Baumgratz, Sandro Binsfeld Ferreira, Michiel S. J. Steyaert, Sergio Bampi, Filip Tavernier:
40-nm CMOS Wideband High-IF Receiver Using a Modified Charge-Sharing Bandpass Filter to Boost Q-Factor. IEEE Trans. Circuits Syst. I Regul. Pap. 65-I(8): 2581-2591 (2018) - [c12]Tim Thielemans, Nicolas Butzen, Athanasios Sarafianos, Michiel Steyaert, Filip Tavernier:
A capacitive DC-DC converter for stacked loads with wide range DVS achieving 98.2% peak efficiency in 40nm CMOS. CICC 2018: 1-4 - [c11]Wouter Diels, Michiel Steyaert, Filip Tavernier:
A 1310/1550 nm Fully-Integrated Optical Receiver with Schottky Photodiode and Low-Noise Transimpedance Amplifier in 40 nm Bulk CMOS. ESSCIRC 2018: 242-245 - [c10]Filipe D. Baumgratz, Sandro B. Ferreira, Michiel Steyaert, Sergio Bampi, Filip Tavernier:
A Charge-Sharing Bandpass Filter Topology with Boosted Q-Factor in 40-NM CMOS. SBCCI 2018: 1-6 - [c9]Mingyi Chen, Ivan Dario Castro, Qiuyang Lin, Tom Torfs, Filip Tavernier, Chris Van Hoof, Nick Van Helleputte:
A 400GΩ Input-Impedance, 220MVpp Linear-Input-Range, 2.8Vpp CM-Interference-Tolerant Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition. VLSI Circuits 2018: 129-130 - 2017
- [c8]Athanasios Ramkaj, Maarten Strackx, Michiel Steyaert, Filip Tavernier:
A 36.4dB SNDR @ 5GHz 1.25GS/s 7b 3.56mW single-channel SAR ADC in 28nm bulk CMOS. ESSCIRC 2017: 167-170 - [c7]Wouter Diels, Michiel Steyaert, Filip Tavernier:
Modelling, design and characterization of Schottky diodes in 28nm bulk CMOS for 850/1310/1550nm fully integrated optical receivers. ESSDERC 2017: 224-227 - [c6]Wouter Diels, Michiel Steyaert, Filip Tavernier:
Schottky diodes in 40nm bulk CMOS for 1310nm high-speed optical receivers. OFC 2017: 1-3 - 2016
- [j2]Tao Zhang, Ping Gui, Sudipto Chakraborty, Tianwei Liu, Guoying Wu, Paulo Moreira, Filip Tavernier:
10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 24(7): 2502-2510 (2016) - 2015
- [c5]Michiel Steyaert, Filip Tavernier, Hans Meyvaert, Athanasios Sarafianos, Nicolas Butzen:
When hardware is free, power is expensive! Is integrated power management the solution? ESSCIRC 2015: 26-34 - 2010
- [c4]Filip Tavernier, Michiel Steyaert:
A 5.5 Gbit/s optical receiver in 130 nm CMOS with speed-enhanced integrated photodiode. ESSCIRC 2010: 542-545
2000 – 2009
- 2009
- [j1]Filip Tavernier, Michel S. J. Steyaert:
High-Speed Optical Receivers With Integrated Photodiode in 130 nm CMOS. IEEE J. Solid State Circuits 44(10): 2856-2867 (2009) - [c3]Filip Tavernier, Michiel Steyaert:
A low power, area efficient limiting amplifier in 90nm CMOS. ESSCIRC 2009: 128-131 - 2008
- [c2]Filip Tavernier, Michiel Steyaert:
Power efficient 4.5Gbit/s optical receiver in 130nm CMOS with integrated photodiode. ESSCIRC 2008: 162-165 - [c1]Filip Tavernier, Michiel Steyaert:
A high-speed fully integrated optical receiver in standard 130nm CMOS. ICECS 2008: 806-809
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-28 01:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint