default search action
Dominik Kowald
Person information
- affiliation: Graz University of Technology, Austria
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Tomislav Duricic, Dominik Kowald, Emanuel Lacic, Elisabeth Lex:
Beyond-accuracy: a review on diversity, serendipity, and fairness in recommender systems based on graph neural networks. Frontiers Big Data 6 (2024) - [j15]Peter Müllner, Elisabeth Lex, Markus Schedl, Dominik Kowald:
Differential privacy in collaborative filtering recommender systems: a review. Frontiers Big Data 6 (2024) - [j14]Dominik Kowald, Deqing Yang, Emanuel Lacic:
Editorial: Reviews in recommender systems: 2022. Frontiers Big Data 7 (2024) - [c49]Tomislav Duricic, Peter Müllner, Nicole Weidinger, Neven A. M. ElSayed, Dominik Kowald, Eduardo E. Veas:
AI-Powered Immersive Assistance for Interactive Task Execution in Industrial Environments. ECAI 2024: 4491-4494 - [c48]Peter Müllner, Elisabeth Lex, Markus Schedl, Dominik Kowald:
The Impact of Differential Privacy on Recommendation Accuracy and Popularity Bias. ECIR (4) 2024: 466-482 - [c47]Florian Koenigstorfer, Armin Haberl, Dominik Kowald, Tony Ross-Hellauer, Stefan Thalmann:
Black Box or Open Science? Assessing Reproducibility-Related Documentation in AI Research. HICSS 2024: 682-691 - [c46]Gustavo Escobedo, Marta Moscati, Peter Muellner, Simone Kopeinik, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Making Alice Appear Like Bob: A Probabilistic Preference Obfuscation Method For Implicit Feedback Recommendation Models. ECML/PKDD (7) 2024: 349-365 - [c45]Oleg Lesota, Jonas Geiger, Max Walder, Dominik Kowald, Markus Schedl:
Oh, Behave! Country Representation Dynamics Created by Feedback Loops in Music Recommender Systems. RecSys 2024: 1022-1027 - [i53]Peter Müllner, Elisabeth Lex, Markus Schedl, Dominik Kowald:
The Impact of Differential Privacy on Recommendation Accuracy and Popularity Bias. CoRR abs/2401.03883 (2024) - [i52]Dominik Kowald:
Transparency, Privacy, and Fairness in Recommender Systems. CoRR abs/2406.11323 (2024) - [i51]Gustavo Escobedo, Marta Moscati, Peter Muellner, Simone Kopeinik, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Making Alice Appear Like Bob: A Probabilistic Preference Obfuscation Method For Implicit Feedback Recommendation Models. CoRR abs/2406.11505 (2024) - [i50]Harald Semmelrock, Tony Ross-Hellauer, Simone Kopeinik, Dieter Theiler, Armin Haberl, Stefan Thalmann, Dominik Kowald:
Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers. CoRR abs/2406.14325 (2024) - [i49]Tomislav Duricic, Peter Müllner, Nicole Weidinger, Neven A. M. ElSayed, Dominik Kowald, Eduardo E. Veas:
AI-Powered Immersive Assistance for Interactive Task Execution in Industrial Environments. CoRR abs/2407.09147 (2024) - [i48]Oleg Lesota, Jonas Geiger, Max Walder, Dominik Kowald, Markus Schedl:
Oh, Behave! Country Representation Dynamics Created by Feedback Loops in Music Recommender Systems. CoRR abs/2408.11565 (2024) - [i47]Florian Atzenhofer-Baumgartner, Bernhard C. Geiger, Christoph Trattner, Georg Vogeler, Dominik Kowald:
Challenges in Implementing a Recommender System for Historical Research in the Humanities. CoRR abs/2410.20909 (2024) - 2023
- [j13]Peter Müllner, Elisabeth Lex, Markus Schedl, Dominik Kowald:
ReuseKNN: Neighborhood Reuse for Differentially Private KNN-Based Recommendations. ACM Trans. Intell. Syst. Technol. 14(5): 80:1-80:29 (2023) - [c44]Dominik Kowald, Gregor Mayr, Markus Schedl, Elisabeth Lex:
A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations. BIAS 2023: 1-16 - [c43]Emanuel Lacic, Tomislav Duricic, Leon Fadljevic, Dieter Theiler, Dominik Kowald:
Uptrendz: API-Centric Real-Time Recommendations in Multi-domain Settings. ECIR (3) 2023: 255-261 - [c42]Marta Moscati, Christian Wallmann, Markus Reiter-Haas, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Integrating the ACT-R Framework with Collaborative Filtering for Explainable Sequential Music Recommendation. RecSys 2023: 840-847 - [d1]Marta Moscati, Christian Wallmann, Markus Reiter-Haas, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Files for Integrating the ACT-R Framework with Collaborative Filtering for Explainable Sequential Music Recommendation. Zenodo, 2023 - [i46]Emanuel Lacic, Tomislav Duricic, Leon Fadljevic, Dieter Theiler, Dominik Kowald:
Uptrendz: API-Centric Real-time Recommendations in Multi-Domain Settings. CoRR abs/2301.01037 (2023) - [i45]Sebastian Scher, Bernhard C. Geiger, Simone Kopeinik, Andreas Trügler, Dominik Kowald:
A conceptual model for leaving the data-centric approach in machine learning. CoRR abs/2302.03361 (2023) - [i44]Dominik Kowald, Gregor Mayr, Markus Schedl, Elisabeth Lex:
A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations. CoRR abs/2303.00400 (2023) - [i43]Harald Semmelrock, Simone Kopeinik, Dieter Theiler, Tony Ross-Hellauer, Dominik Kowald:
Reproducibility in Machine Learning-Driven Research. CoRR abs/2307.10320 (2023) - [i42]Tomislav Duricic, Dominik Kowald, Emanuel Lacic, Elisabeth Lex:
Beyond-Accuracy: A Review on Diversity, Serendipity and Fairness in Recommender Systems Based on Graph Neural Networks. CoRR abs/2310.02294 (2023) - [i41]Armin Haberl, Jürgen Fleiß, Dominik Kowald, Stefan Thalmann:
Take the aTrain. Introducing an Interface for the Accessible Transcription of Interviews. CoRR abs/2310.11967 (2023) - 2022
- [c41]Dominik Kowald, Emanuel Lacic:
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems. BIAS 2022: 1-11 - [c40]Peter Müllner, Stefan Schmerda, Dieter Theiler, Stefanie N. Lindstaedt, Dominik Kowald:
Towards employing recommender systems for supporting data and algorithm sharing. DE@CoNEXT 2022: 8-14 - [c39]Emanuel Lacic, Leon Fadljevic, Franz Weissenboeck, Stefanie N. Lindstaedt, Dominik Kowald:
What Drives Readership? An Online Study on User Interface Types and Popularity Bias Mitigation in News Article Recommendations. ECIR (2) 2022: 172-179 - [i40]Dominik Kowald, Emanuel Lacic:
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems. CoRR abs/2203.00376 (2022) - [i39]Emanuel Lacic, Dominik Kowald:
Recommendations in a Multi-Domain Setting: Adapting for Customization, Scalability and Real-Time Performance. CoRR abs/2203.01256 (2022) - [i38]Peter Müllner, Markus Schedl, Elisabeth Lex, Dominik Kowald:
ReuseKNN: Neighborhood Reuse for Privacy-Aware Recommendations. CoRR abs/2206.11561 (2022) - [i37]Sebastian Scher, Simone Kopeinik, Andreas Trügler, Dominik Kowald:
Long-term dynamics of fairness: understanding the impact of data-driven targeted help on job seekers. CoRR abs/2208.08881 (2022) - [i36]Peter Müllner, Stefan Schmerda, Dieter Theiler, Stefanie N. Lindstaedt, Dominik Kowald:
Towards Employing Recommender Systems for Supporting Data and Algorithm Sharing. CoRR abs/2210.11828 (2022) - 2021
- [j12]Dominik Kowald, Peter Müllner, Eva Zangerle, Christine Bauer, Markus Schedl, Elisabeth Lex:
Support the underground: characteristics of beyond-mainstream music listeners. EPJ Data Sci. 10(1): 14 (2021) - [j11]Elisabeth Lex, Dominik Kowald, Paul Seitlinger, Thi Ngoc Trang Tran, Alexander Felfernig, Markus Schedl:
Psychology-informed Recommender Systems. Found. Trends Inf. Retr. 15(2): 134-242 (2021) - [c38]Tomislav Duricic, Dominik Kowald, Markus Schedl, Elisabeth Lex:
My friends also prefer diverse music: homophily and link prediction with user preferences for mainstream, novelty, and diversity in music. ASONAM 2021: 447-454 - [c37]Peter Müllner, Dominik Kowald, Elisabeth Lex:
Robustness of Meta Matrix Factorization Against Strict Privacy Constraints. ECIR (2) 2021: 107-119 - [c36]Oleg Lesota, Alessandro B. Melchiorre, Navid Rekabsaz, Stefan Brandl, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Analyzing Item Popularity Bias of Music Recommender Systems: Are Different Genders Equally Affected? RecSys 2021: 601-606 - [i35]Peter Müllner, Dominik Kowald, Elisabeth Lex:
Robustness of Meta Matrix Factorization Against Strict Privacy Constraints. CoRR abs/2101.06927 (2021) - [i34]Dominik Kowald, Peter Müllner, Eva Zangerle, Christine Bauer, Markus Schedl, Elisabeth Lex:
Support the Underground: Characteristics of Beyond-Mainstream Music Listeners. CoRR abs/2102.12188 (2021) - [i33]Oleg Lesota, Alessandro B. Melchiorre, Navid Rekabsaz, Stefan Brandl, Dominik Kowald, Elisabeth Lex, Markus Schedl:
Analyzing Item Popularity Bias of Music Recommender Systems: Are Different Genders Equally Affected? CoRR abs/2108.06973 (2021) - [i32]Peter Müllner, Elisabeth Lex, Dominik Kowald:
Position Paper on Simulating Privacy Dynamics in Recommender Systems. CoRR abs/2109.06473 (2021) - [i31]Tomislav Duricic, Dominik Kowald, Markus Schedl, Elisabeth Lex:
My friends also prefer diverse music: homophily and link prediction with user preferences for mainstream, novelty, and diversity in music. CoRR abs/2111.00562 (2021) - [i30]Emanuel Lacic, Leon Fadljevic, Franz Weissenboeck, Stefanie N. Lindstädt, Dominik Kowald:
What Drives Readership? An Online Study on User Interface Types and Popularity Bias Mitigation in News Article Recommendations. CoRR abs/2111.14467 (2021) - 2020
- [j10]Markus Schedl, Christine Bauer, Wolfgang Reisinger, Dominik Kowald, Elisabeth Lex:
Listener Modeling and Context-Aware Music Recommendation Based on Country Archetypes. Frontiers Artif. Intell. 3: 508725 (2020) - [j9]Elisabeth Lex, Dominik Kowald, Markus Schedl:
Modeling Popularity and Temporal Drift of Music Genre Preferences. Trans. Int. Soc. Music. Inf. Retr. 3(1): 17-30 (2020) - [j8]Emanuel Lacic, Markus Reiter-Haas, Dominik Kowald, Manoj Reddy Dareddy, Junghoo Cho, Elisabeth Lex:
Using autoencoders for session-based job recommendations. User Model. User Adapt. Interact. 30(4): 617-658 (2020) - [c35]Dominik Kowald, Markus Schedl, Elisabeth Lex:
The Unfairness of Popularity Bias in Music Recommendation: A Reproducibility Study. ECIR (2) 2020: 35-42 - [c34]Tomislav Duricic, Hussain Hussain, Emanuel Lacic, Dominik Kowald, Denis Helic, Elisabeth Lex:
Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering. ISMIS 2020: 181-191 - [c33]Leon Fadljevic, Katharina Maitz, Dominik Kowald, Viktoria Pammer-Schindler, Barbara Gasteiger-Klicpera:
Slow is good: the effect of diligence on student performance in the case of an adaptive learning system for health literacy. LAK 2020: 112-117 - [i29]Dominik Kowald, Elisabeth Lex, Markus Schedl:
Utilizing Human Memory Processes to Model Genre Preferences for Personalized Music Recommendations. CoRR abs/2003.10699 (2020) - [i28]Tomislav Duricic, Hussain Hussain, Emanuel Lacic, Dominik Kowald, Denis Helic, Elisabeth Lex:
Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering. CoRR abs/2003.13345 (2020) - [i27]Markus Schedl, Christine Bauer, Wolfgang Reisinger, Dominik Kowald, Elisabeth Lex:
Listener Modeling and Context-aware Music Recommendation Based on Country Archetypes. CoRR abs/2009.09935 (2020)
2010 – 2019
- 2019
- [j7]Adolfo Ruiz-Calleja, Sebastian Dennerlein, Dominik Kowald, Dieter Theiler, Elisabeth Lex, Tobias Ley:
An Infrastructure for Workplace Learning Analytics: Tracing Knowledge Creation with the Social Semantic Server. J. Learn. Anal. 6(2) (2019) - [c32]Simone Kopeinik, Elisabeth Lex, Dominik Kowald, Dietrich Albert, Paul Seitlinger:
A Real-Life School Study of Confirmation Bias and Polarisation in Information Behaviour. EC-TEL 2019: 409-422 - [c31]Elisabeth Lex, Dominik Kowald:
The Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. GI-Jahrestagung 2019: 285-286 - [i26]Dominik Kowald, Simone Kopeinik, Elisabeth Lex:
The TagRec Framework as a Toolkit for the Development of Tag-Based Recommender Systems. CoRR abs/1901.00306 (2019) - [i25]Dominik Kowald, Elisabeth Lex, Markus Schedl:
Modeling Artist Preferences of Users with Different Music Consumption Patterns for Fair Music Recommendations. CoRR abs/1907.09781 (2019) - [i24]Tomislav Duricic, Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Exploiting weak ties in trust-based recommender systems using regular equivalence. CoRR abs/1907.11620 (2019) - [i23]Elisabeth Lex, Dominik Kowald:
The Impact of Time on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. CoRR abs/1908.00977 (2019) - [i22]Dominik Kowald, Matthias Traub, Dieter Theiler, Heimo Gursch, Emanuel Lacic, Stefanie N. Lindstaedt, Roman Kern, Elisabeth Lex:
Using the Open Meta Kaggle Dataset to Evaluate Tripartite Recommendations in Data Markets. CoRR abs/1908.04017 (2019) - [i21]Emanuel Lacic, Dominik Kowald, Dieter Theiler, Matthias Traub, Lucky Kuffer, Stefanie N. Lindstaedt, Elisabeth Lex:
Evaluating Tag Recommendations for E-Book Annotation Using a Semantic Similarity Metric. CoRR abs/1908.04042 (2019) - [i20]Dominik Kowald, Markus Schedl, Elisabeth Lex:
The Unfairness of Popularity Bias in Music Recommendation: A Reproducibility Study. CoRR abs/1912.04696 (2019) - 2018
- [j6]Paul Seitlinger, Tobias Ley, Dominik Kowald, Dieter Theiler, Ilire Hasani-Mavriqi, Sebastian Dennerlein, Elisabeth Lex, Dietrich Albert:
Balancing the Fluency-Consistency Tradeoff in Collaborative Information Search with a Recommender Approach. Int. J. Hum. Comput. Interact. 34(6): 557-575 (2018) - [c30]Dominik Kowald, Emanuel Lacic, Dieter Theiler, Elisabeth Lex:
AFEL-REC: A Recommender System for Providing Learning Resource Recommendations in Social Learning Environments. CIKM Workshops 2018 - [c29]Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up and Enhance Recommendations. CIKM Workshops 2018 - [c28]Sebastian Dennerlein, Dominik Kowald, Viktoria Pammer-Schindler, Elisabeth Lex, Tobias Ley:
Simulation-based Co-Creation of Algorithms. CC-TEL/TACKLE@EC-TEL 2018 - [c27]Angela Fessl, Dominik Kowald, Susana López-Sola, Ana Moreno, Ricardo Alonso Maturana, Stefan Thalmann:
Analytics for Everyday Learning from two Perspectives: Knowledge Workers and Teachers. AFEL@EC-TEL 2018 - [c26]Tomislav Duricic, Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Trust-based collaborative filtering: tackling the cold start problem using regular equivalence. RecSys 2018: 446-450 - [c25]Dominik Kowald, Paul Seitlinger, Tobias Ley, Elisabeth Lex:
The Impact of Semantic Context Cues on the User Acceptance of Tag Recommendations: An Online Study. WWW (Companion Volume) 2018: 1-2 - [c24]Mathieu d'Aquin, Dominik Kowald, Angela Fessl, Elisabeth Lex, Stefan Thalmann:
AFEL - Analytics for Everyday Learning. WWW (Companion Volume) 2018: 439-440 - [i19]Dominik Kowald, Paul Seitlinger, Tobias Ley, Elisabeth Lex:
The Impact of Semantic Context Cues on the User Acceptance of Tag Recommendations: An Online Study. CoRR abs/1803.02179 (2018) - [i18]Dominik Kowald:
Modeling Activation Processes in Human Memory to Improve Tag Recommendations. CoRR abs/1803.03176 (2018) - [i17]Dominik Kowald, Elisabeth Lex:
Overcoming the Imbalance Between Tag Recommendation Approaches and Real-World Folksonomy Structures with Cognitive-Inspired Algorithms. CoRR abs/1805.03067 (2018) - [i16]Dominik Kowald:
Modeling Cognitive Processes in Social Tagging to Improve Tag Recommendations. CoRR abs/1805.11878 (2018) - [i15]Tomislav Duricic, Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Trust-Based Collaborative Filtering: Tackling the Cold Start Problem Using Regular Equivalence. CoRR abs/1807.06839 (2018) - [i14]Dominik Kowald, Emanuel Lacic, Dieter Theiler, Elisabeth Lex:
AFEL-REC: A Recommender System for Providing Learning Resource Recommendations in Social Learning Environments. CoRR abs/1808.04603 (2018) - [i13]Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Neighborhood Troubles: On the Value of User Pre-Filtering To Speed Up and Enhance Recommendations. CoRR abs/1808.06417 (2018) - [i12]Dominik Kowald, Elisabeth Lex:
Studying Confirmation Bias in Hashtag Usage on Twitter. CoRR abs/1809.03203 (2018) - [i11]Elisabeth Lex, Mario Wagner, Dominik Kowald:
Mitigating Confirmation Bias on Twitter by Recommending Opposing Views. CoRR abs/1809.03901 (2018) - 2017
- [j5]Simone Kopeinik, Dominik Kowald, Ilire Hasani-Mavriqi, Elisabeth Lex:
Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning. J. Web Sci. 2(4): 45-61 (2017) - [j4]Dominik Kowald:
Modeling Activation Processes in Human Memory to Improve Tag Recommendations. SIGIR Forum 51(3): 166 (2017) - [c23]Mathieu d'Aquin, Alessandro Adamou, Stefan Dietze, Besnik Fetahu, Ujwal Gadiraju, Ilire Hasani-Mavriqi, Peter Holtz, Joachim Kimmerle, Dominik Kowald, Elisabeth Lex, Susana López-Sola, Ricardo Alonso Maturana, Vedran Sabol, Pinelopi Troullinou, Eduardo E. Veas:
AFEL: Towards Measuring Online Activities Contributions to Self-directed Learning. ARTEL@EC-TEL 2017 - [c22]Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
Tailoring Recommendations for a Multi-Domain Environment. RecSysKTL 2017: 42-45 - [c21]Dominik Kowald, Simone Kopeinik, Elisabeth Lex:
The TagRec Framework as a Toolkit for the Development of Tag-Based Recommender Systems. UMAP (Adjunct Publication) 2017: 23-28 - [c20]Dominik Kowald, Subhash Chandra Pujari, Elisabeth Lex:
Temporal Effects on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. WWW 2017: 1401-1410 - [i10]Dominik Kowald, Subhash Chandra Pujari, Elisabeth Lex:
Temporal Effects on Hashtag Reuse in Twitter: A Cognitive-Inspired Hashtag Recommendation Approach. CoRR abs/1701.01276 (2017) - [i9]Emanuel Lacic, Dominik Kowald, Markus Reiter-Haas, Valentin Slawicek, Elisabeth Lex:
Beyond Accuracy Optimization: On the Value of Item Embeddings for Student Job Recommendations. CoRR abs/1711.07762 (2017) - 2016
- [j3]Patricia Santos, Elisabeth Lex, Sebastian Dennerlein, Dieter Theiler, John Cook, Tamsin Treasure-Jones, Debbie Holley, Micky Kerr, Graham Attwell, Dominik Kowald:
Going beyond your Personal Learning Network, Using Recommendations and Trust through a Multimedia Question-Answering Service for Decision-support: a Case Study in the Healthcare. J. Univers. Comput. Sci. 22(3): 340-359 (2016) - [j2]Christoph Trattner, Dominik Kowald, Paul Seitlinger, Tobias Ley, Simone Kopeinik:
Modeling Activation Processes in Human Memory to Predict the Use of Tags in Social Bookmarking Systems. J. Web Sci. 2(1): 1-16 (2016) - [c19]Simone Kopeinik, Dominik Kowald, Elisabeth Lex:
Which Algorithms Suit Which Learning Environments? A Comparative Study of Recommender Systems in TEL. EC-TEL 2016: 124-138 - [c18]Dominik Kowald, Elisabeth Lex:
The Influence of Frequency, Recency and Semantic Context on the Reuse of Tags in Social Tagging Systems. HT 2016: 237-242 - [c17]Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
High Enough?: Explaining and Predicting Traveler Satisfaction Using Airline Reviews. HT 2016: 249-254 - [i8]Dominik Kowald, Elisabeth Lex:
The Influence of Frequency, Recency and Semantic Context on the Reuse of Tags in Social Tagging Systems. CoRR abs/1604.00837 (2016) - [i7]Emanuel Lacic, Dominik Kowald, Elisabeth Lex:
High Enough? Explaining and Predicting Traveler Satisfaction Using Airline Review. CoRR abs/1604.00942 (2016) - 2015
- [j1]Christoph Trattner, Dominik Kowald, Emanuel Lacic:
TagRec: towards a toolkit for reproducible evaluation and development of tag-based recommender algorithms. SIGWEB Newsl. 2015(Winter): 3:1-3:10 (2015) - [c16]Sebastian Dennerlein, Dominik Kowald, Elisabeth Lex, Dieter Theiler, Emanuel Lacic, Tobias Ley:
The social semantic server: a flexible framework to support informal learning at the workplace. I-KNOW 2015: 26:1-26:8 - [c15]Matthias Traub, Dominik Kowald, Emanuel Lacic, Pepijn Schoen, Gernot Supp, Elisabeth Lex:
Smart booking without looking: providing hotel recommendations in the TripRebel portal. I-KNOW 2015: 50:1-50:4 - [c14]Dominik Kowald, Elisabeth Lex:
Evaluating Tag Recommender Algorithms in Real-World Folksonomies: A Comparative Study. RecSys 2015: 265-268 - [c13]Emanuel Lacic, Dominik Kowald, Matthias Traub, Granit Luzhnica, Jörg Simon, Elisabeth Lex:
Tackling Cold-Start Users in Recommender Systems with Indoor Positioning Systems. RecSys Posters 2015 - [c12]Paul Seitlinger, Dominik Kowald, Simone Kopeinik, Ilire Hasani-Mavriqi, Elisabeth Lex, Tobias Ley:
Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics. WWW (Companion Volume) 2015: 339-345 - [c11]Dominik Kowald:
Modeling Cognitive Processes in Social Tagging to Improve Tag Recommendations. WWW (Companion Volume) 2015: 505-509 - [i6]Paul Seitlinger, Dominik Kowald, Simone Kopeinik, Ilire Hasani-Mavriqi, Tobias Ley, Elisabeth Lex:
Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics. CoRR abs/1501.07716 (2015) - 2014
- [c10]Dominik Kowald, Emanuel Lacic, Christoph Trattner:
TagRec: towards a standardized tag recommender benchmarking framework. HT 2014: 305-307 - [c9]Emanuel Lacic, Dominik Kowald, Paul Seitlinger, Christoph Trattner, Denis Parra:
Recommending Items in Social Tagging Systems Using Tag and Time Informations. HT (Doctoral Consortium / Late-breaking Results / Workshops) 2014 - [c8]Emanuel Lacic, Dominik Kowald, Christoph Trattner:
SocRecM: a scalable social recommender engine for online marketplaces. HT 2014: 308-310 - [c7]Dominik Kowald, Paul Seitlinger, Christoph Trattner, Tobias Ley:
Long time no see: the probability of reusing tags as a function of frequency and recency. WWW (Companion Volume) 2014: 463-468 - [c6]Emanuel Lacic, Dominik Kowald, Denis Parra, Martin Kahr, Christoph Trattner:
Towards a scalable social recommender engine for online marketplaces: the case of apache solr. WWW (Companion Volume) 2014: 817-822 - [i5]Dominik Kowald, Paul Seitlinger, Christoph Trattner, Tobias Ley:
Forgetting the Words but Remembering the Meaning: Modeling Forgetting in a Verbal and Semantic Tag Recommender. CoRR abs/1402.0728 (2014) - [i4]Emanuel Lacic, Dominik Kowald, Lukas Eberhard, Christoph Trattner, Denis Parra, Leandro Balby Marinho:
Utilizing Online Social Network and Location-Based Data to Recommend Items in an Online Marketplace. CoRR abs/1405.1837 (2014) - [i3]Emanuel Lacic, Dominik Kowald, Christoph Trattner:
SocRecM: A Scalable Social Recommender Engine for Online Marketplaces. CoRR abs/1405.1842 (2014) - [i2]Emanuel Lacic, Dominik Kowald, Paul Seitlinger, Christoph Trattner, Denis Parra:
Recommending Items in Social Tagging Systems Using Tag and Time Information. CoRR abs/1406.7727 (2014) - 2013
- [c5]Paul Seitlinger, Dominik Kowald, Christoph Trattner, Tobias Ley:
Recommending tags with a model of human categorization. CIKM 2013: 2381-2386 - [c4]Dominik Kowald, Sebastian Dennerlein, Dieter Theiler, Simon Walk, Christoph Trattner:
The Social Semantic Server - A Framework to Provide Services on Social Semantic Network Data. I-SEMANTICS (Posters & Demos) 2013: 50-54 - [c3]Dominik Kowald, Simone Kopeinik, Paul Seitlinger, Tobias Ley, Dietrich Albert, Christoph Trattner:
Refining Frequency-Based Tag Reuse Predictions by Means of Time and Semantic Context. MSM/MUSE 2013: 55-74 - [c2]Dominik Kowald, Paul Seitlinger, Simone Kopeinik, Tobias Ley, Christoph Trattner:
Forgetting the Words but Remembering the Meaning: Modeling Forgetting in a Verbal and Semantic Tag Recommender. MSM/MUSE 2013: 75-95 - [c1]Emanuel Lacic, Dominik Kowald, Lukas Eberhard, Christoph Trattner, Denis Parra, Leandro Balby Marinho:
Utilizing Online Social Network and Location-Based Data to Recommend Products and Categories in Online Marketplaces. MSM/MUSE 2013: 96-115 - [i1]Dominik Kowald, Paul Seitlinger, Christoph Trattner, Tobias Ley:
Long Time No See: The Probability of Reusing Tags as a Function of Frequency and Recency. CoRR abs/1312.5111 (2013)
Coauthor Index
aka: Peter Muellner
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint