A New Model for Permeability Estimation In Carbonate Reservoirs By Using NMR T۲ Distribution and Lsboost Ensemble Technique
محل انتشار: مجله علوم و فن آوری نفت، دوره: 10، شماره: 4
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 132
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-10-4_003
تاریخ نمایه سازی: 30 آذر 1402
چکیده مقاله:
Permeability is arguably the most critical property for evaluating flow in the reservoir. It is also one of the challenging parameters which must be measured in the field. Nuclear Magnetic Resonance (NMR) logging across the borehole is among the popular techniques, which it is utilized to determine permeability across the reservoir. However, available correlations in literature for estimating permeability from NMR data do not usually provide acceptable accuracy in the carbonate rocks. Therefore, a new model is proposed to estimate permeability by establishing a relationship between core derived permeability and extracted features from the T۲ distribution curve of NMR data with the ensemble LSBoost algorithm. The feature extraction process is performed using peak analysis on T۲ distribution curves which it leads to ۵ relevant parameters, including T۲lm, TCMR, prominence, peak amplitude and width. The proposed model is validated by comparing the proposed method’s correlation coefficient against Timur-Coates and SDR equation estimation accuracy. The results show that our model generally provides better prediction accuracies in comparison with the empirical equation-based derived permeabilities.
کلیدواژه ها:
نویسندگان
Shahin Parchekhari
Department of Petroleum Engineering, Kish International Campus, University of Tehran, Kish, Iran\Petroleum Engineering Department, National Iranian Southfield Oil Company (NISOC), Ahvaz, Iran
Ali Nakhaee
Department of Petroleum Engineering, Kish International Campus, University of Tehran, Kish, IranInstitute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Ali Kadkhodaie
Earth Sciences Department, University of Tabriz, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :