ارزیابی عملکرد روش های ماشین بردار پشتیبان و سیستم استنتاج عصبی فازی تطبیقی در پیش بینی جریان ماهانه رودخانه ها (مطالعه موردی رودخانه های نازلو و سزار)
محل انتشار: مجله تحقیقات آب و خاک ایران، دوره: 51، شماره: 3
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 194
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJSWR-51-3_011
تاریخ نمایه سازی: 2 خرداد 1402
چکیده مقاله:
در سالهای اخیر با رشد فناوری، روشهای نوین برای حل مسائل غیرخطی نظیر پیشبینی جریان رودخانهها به صورت قابل ملاحظهای توسعه یافته است. از جمله روشهایی که اخیرا توسط محققان مختلف در این زمینه مورد استفاده قرار گرفته است مدلهای ماشین بردار پشتیبان (SVM) و سیستم استنتاج عصبی فازی تطبیقی (ANFIS) میباشد. در این مطالعه از روشهای مذکور برای پیشبینی جریان ماهانه رودخانههای نازلوچای و سزار در دوره آماری ۱۳۹۵-۱۳۳۵ استفاده شد. در ابتدا الگوهای ورودی در دو حالت الف) استفاده از دادههای جریان و در نظر گرفتن نقش حافظه و ب) تاثیر دادن ترم پریودیک آماده و به مدلها معرفی گردید. مدل سازی براساس ۸۰ درصد داده های تاریخی ثبت شده صورت گرفت (۵۷۶ ماه) و با ۲۰ (۱۴۴ ماه) درصد بقیه ارزیابی گردید. عملکرد مدلهای به کار رفته با شاخصهای آماری مجذور میانگین مربعات خطا (RMSE)، نش- ساتکلیف (NS) و میانگین قدر مطلق خطای نسبی (MARE)، مورد بررسی قرار گرفت. نتایج حاصل نشان داد که روش SVM با تابع کرنل RBF بیشترین دقت را در پیشبینی جریان ماهانه هر دو رودخانه داشته و استفاده از ترم پریودیک توانسته است عملکرد آن را به طور قابل ملاحظهای افزایش دهد. همچنین کارایی مدل ANFIS نیز با استفاده از ترم پریودیک بهبود یافته و در محل ایستگاه تپیک در الگوی M۷ و برای جریان رودخانه سزار با الگوی M۶ کمترین خطا را در پیشبینی جریان داشته است. به طور کلی نتایج این مطالعه نشان داد که روش SVM از عملکرد بهتری نسبت به مدل ANFIS در پیشبینی جریان برخوردار بوده و انتخاب تابع کرنل مناسب تاثیر مستقیمی بر کارایی آن دارد.
کلیدواژه ها:
نویسندگان
فرشاد احمدی
استادیار گروه هیدرولوژی و مهندسی منابع آب، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، اهواز، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :