2015年5月26日、エヌビディア様主催「ディープラーニングフォーラム2015」でのPreferred Networksの講演資料です http://www.gdep.jp/page/view/412Read less
2. アジェンダ l 会社紹介 l 深層学習と⼈人⼯工知能 l 実世界の事例例 ̶— ⾃自動⾞車車 ̶— ロボット ̶— バイオ・ヘルスケア l 深層学習の研究の最前線 ̶— 少数の事例例からの汎化 ̶— 情報の組織化 ̶— 物理理モデル、⼼心理理モデル 3. 会社紹介:Preferred Networks (PFN) l IoT時代に合わせた分散知能を備えた新しいコンピュータを創造する l 2014年年3⽉月創業 l 東京オフィス, シリコンバレーオフィス l 従業員:約60⼈人 殆どが研究者、エンジニア l 主な出資者 FANUC, Toyota, NTT 3 We are hiring !!! 4. AutomotiveHumanoid Robot Preferred Networks’ positioning in AI: Industrial IoT 4
Photo by midiman under Creative Commons License (original) メリークリスマフ! 得居です。今日はクリスマスですね。皆様昨日はいかがお過ごしでしたでしょうか? クリスマスということで、今日は私たちから皆様に、特にデータ解析や論文執筆、手法の比較検証のために計算機上で様々な実験をしている方々に、プレゼントがあります! Github – pfi/maf 今日、実験結果を「ビルドする」ためのツールmafを公開しました! mafは、PFIでもよく使われているPythonベースのビルドツールwafを実験に使うための拡張です。大まかな使い方を学ぶために、ドキュメントとサンプルも公開しています。 maf — maf 0.1 documentation サンプル 実験手順をビルドだと思って宣言的に書くこと自体はwaf等既存のビルドツールで可能です。m
どうも,実は今年から開発チームにjoinしていた中川です.可愛い犬の写真がなかったので,可愛いマスコットの画像を貼っておきます. 最近MapReduceとかその実装であるHadoopとかをよく聞くようになりました.これはつまり,それだけ大量のデータをなんとか処理したいという要望があるからだと思います.しかし当たり前ですが,MapReduceは銀の弾丸ではありません. ということで,最近気になっているMapReduceとは違ったアプローチを取っている分散処理基盤について,社内のTechTalkで話した内容を簡単にまとめて紹介したいと思います. Bulk Sychronous Parallel このアルゴリズム自体は1990年に誕生したものです.長いのでBSPと書きます.さて,グラフから最短経路を求める時,MapReduceは使えるでしょうか?このような論文が出るくらいですから出来ないことはあ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く