Pythonプログラミング入門¶ ▲で始まる項目は授業では扱いません。興味にしたがって学習してください。 ノートブック全体に▲が付いているものもありますので注意してください。
Pythonプログラミング入門¶ ▲で始まる項目は授業では扱いません。興味にしたがって学習してください。 ノートブック全体に▲が付いているものもありますので注意してください。
オブジェクト指向 1. オブジェクト指向の起源 2003年チューリング賞の受賞者アラン・ケイさんはよくオブジェクト指向プログラミングの父と称されます。ご本人も憚ることなく、幾度、公の場で発明権を宣言しています。しかし、ケイさんは「C++」や「Java」などの現代のオブジェクト指向言語を蔑ろにしています。これらの言語は「Simula 67」という言語を受け継いだもので、私が作った「Smalltalk」と関係ないのだとケイさんは考えています。 オブジェクト指向という名称は確かにアラン・ケイさんに由来するものです。しかし、C++とJavaで使われている現代のオブジェクト指向は当初のと結構違います。ケイさん自身もこれらの言語を後継者として認めないです。では、ケイさん曰くC++とJavaの親であるSimula 67という言語はどんな言語でしょうか。ここで、簡単なサンプルコードを見てみましょう。 Cl
概要 WEB系のサービスで色々な試作を実施した後に効果を検証するのは非常に重要だと思いますが、 そのやり方として基本的な統計学が十分に使えると思っています。 今回は基本的な統計学からビジネスで使える試作の効果検証、データ分析を目的にPython+JupyterLab(Docker)を使った統計的データ分析のやり方をまとめました。 また今回使ったnotebookは以下にもありますのでご参考ください。 https://github.com/hikarut/Data-Science/tree/master/notebooks/statisticsSample 環境 以下を参考にDockerでJupyterLabが使える状態を前提とします。 Dockerで起動したJupyterLabでvimキーバインドを使う
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く