このゼミでは、Rのまったくの初心者が、ある程度Rを使ってデータを見ることができるようになることを目的とします。 このページでは、データを取った後に研究者が行うと思われる手順をRで実行する方法について解説します。より詳細な技術については、以下のページをご覧下さい。
このゼミでは、Rのまったくの初心者が、ある程度Rを使ってデータを見ることができるようになることを目的とします。 このページでは、データを取った後に研究者が行うと思われる手順をRで実行する方法について解説します。より詳細な技術については、以下のページをご覧下さい。
R is an elegant and comprehensive statistical and graphical programming language. Unfortunately, it can also have a steep learning curve. I created this website for both current R users, and experienced users of other statistical packages (e.g., SAS , SPSS , Stata) who would like to transition to R. My goal is to help you quickly access this language in your work. I assume that you are already fam
about scratch-R Quick-Rは素晴らしい。あくまでも自分のために、地味に日本語にしておくことにした。 自分のためのメモmyscratchpadに残しといたメモもQuick-Rをパクって参考にして整理することにした。 あくまでも自分のため。その上思いっきり未完成。何か知りたい人はQuick-RかRjpwikiに急ぐんだ。 This website is originated from Quick-R by Dr. Kabacoff. I don't intend to infringe his copyright. ご意見・ご批判・お問い合わせ等は以下のメールアドレスまで。 You can reach me by following e-mail address. R in Action Quick -Rが本になったそうだ。
まずは、基本的な用語と、Rでの基本的なコマンドをここで学ぶ。何も知らずに、回帰分析や主成分分析、クラスター分析をするのは「無謀」というもの。気持ちは理解できなくは無いのだが。以下のトピックを見て、一つでも知らない用語があるならば、先に進まずに、最初から順にチュートリアルをこなした方が良い。また、理解できている人も、一般的な教科書とは異なった説明もある。軽く目を通した方が良いかもしれない。 文系のための「行列の構造」 文系のための「行列」(1):行列データの構造について 文系のための「行列」(2):多次元データについて 文系のための「行列」(3):行列の種類について 文系のための「行列」(4):「変数」と「添字」について 文系のための「行列の演算」 文系のための「行列の演算」:行列の「足し算」と「引き算」 文系のための「内積」(1):行列の「掛け算」の方法 文系のための「内積」(2):行列の
そこで,垂線を下ろしたときに分散が最も大きくなる直線を第1主成分とします. 第2主成分は,第1主成分と直行する直線の中で,データから垂線を下ろしたときに分散が最も大きくなる直線とし,以後同様に,第 [math]i+1[/math] 成分は第 [math]i[/math] 主成分と直行する直線の中で,データから垂線を下ろしたときに分散が最も大きくなる直線とします. 最後の主成分である第 [math]p[/math] 主成分は,選ぶことができずに決まります. 今回の例は2次元なので,第2主成分は第1主成分に直行する直線に決まってしまい,下の図のようになります. 主成分を求めるには,まず各変数を平均0,標準偏差1に正規化(標準化)し,分散共分散行列の固有値と固有ベクトルを求めます. 分散共分散行列とは、行列の [math]i[/math] 行 [math]j[/math] の要素が、[math]
Technical Data presentation in R コピペで学ぶ Rでテクニカルデータプレゼンテーション 1.基礎統計解析編 グラフィックス・リテラシ-教育: 「図学 I ・図形情報 I ・統計学」科目 修了後のコースウェア 福岡大学工学部図学教室 梶山 喜一郎 ・つまみ食いで,学習しないように願います. ・データの可視化を体系・系統だったスキルにするために順を追って学習する. ・統計ブームに乗っている学習者も先人に感謝の気持ちを.さらに, ・確かなスキルにするために,教科書・解説書を理解し,Rスクリプトで確認. A. はじめに--ここは統計・解析の必要を味わった後で読めばよい まず,統計の手続きを実行する.慣れたら統計的に考えよう. 学校の統計学を復習--買った教科書とノートをまた読むだけ a. 測定と尺度 Measurement and scale b. 記述統計学の
1. 基本事項 1.1 インストール、起動、終了など 1.2 簡単な計算 1.3 パッケージ・ライブラリ 1.4 表示 1.5 ベクトル 1.6 行列 1.7 基本的な数値計算 1.8 データの取り扱い法 1.9 グラフィック 2. 基本的手法 2.1 準備:確率・統計の基礎 2.2 検定 2.3 回帰分析 2.4 主成分分析 2.5 因子分析 2.6 微分方程式 2.7 ランダム行列 2.8 複雑ネットワーク 3. 計量経済学 3.1 時系列 3.2 多変量時系列モデル 3.3 ベイズ統計 3.4 粒子フィルタ 3.5 生存時間分析 4. テキストマイニング 4.1 文字列の操作 4.2 テキストデータの分析 5. 発展編 5.1 R for MetaTrader (F
R は有名な統計言語『 S 言語』をオープンソースとして実装し直した統計解析ソフトです.さまざまなプラットフォーム(OS)に対応しており,誰でも自由にダウンロードすることができます.それにも関わらず,世界中の専門家が開発に携わっており,日々新しい手法・アルゴリズムが付け加えられています.とにかく計算が速い上にグラフィックも充実しているので数値計算などにも持ってこいです.このドキュメントは Windows 版 R と Mac OS X 版 R(と一部 Linux 版 R )でコマンドを調べた足跡です. ちなみに,この頁の内容を新しくした書籍は こちら ,電子書籍版は こちら で販売されております.
RStudioの紹介 RStudio™ はRのための新しい統合開発環境(IDE)です。RStudioは,あなたがRを最大限利用する手助けとなるよう直感的なユーザインターフェイスと強力なコーディングツールを結合させたものです。 生産的 RStudioはRを使って何かを生み出す時に必要なものすべてを単一のカスタマイズ可能な環境にまとめたものです。その直感的なインタフェイスと強力なコーディングツールは作業をより早く終える助けとなるでしょう。 どこでも走る RStudioはWindows, Mac OS X, Linuxといったすべての主要なプラットホームで利用できます。RStudioはRとともにサーバ上で走らせることもできるので,複数のユーザがウェブブラウザを用いてRStudio IDEを利用することもできます。 フリー&オープン R同様,RStudioもソフトウェアの共有と改変,すべてのユーザ
「Rによる統計解析」 オーム社 刊 サポートページ 目次 第1章 Rを使ってみる 第2章 データの取り扱い方 第3章 一変量統計 第4章 二変量統計 第5章 検定と推定 第6章 多変量解析 第7章 統合化された関数を利用する 第8章 データ分析の例 付録A Rの解説 付録B Rの参考図書など はじめに R とは何か,何ができるかのリンク集(日本のもののみ) R を使うためにはどうしたらいいの? データなどの読み書き R の定石(R に限らずプログラミングの定石も) R を使って実際に統計解析をする AtoZ 一連の流れ データファイルの準備をする 分析してみる 分析結果を LaTeX で処理したり,ワープロに貼り込んだりする 道具立て 連続変数データをカテゴリーデータに変換 カテゴリーデータの再カテゴリー化 度数分布表と度数分布図の作成 散布図・箱髭図の描画 クロス集計(独立性の検定,フィ
Rの基礎 コンソール Rはコンソールと呼ばれるウィンドウに命令を入力してEnterキーを押すと,指定された命令が実行されます. 命令はプロンプトと呼ばれる ">" 記号の右に入力します. 例:足し算掛け算 > 1 + (2 * 3) - (4 / 5) [1] 6.2 数値などの前後にあるスペースは省いても問題ありませんが,空白を挟む方が読みやすくなります. 変数 代入 Rではデータに名前をつけて登録します.これを変数と言います.変数を登録するには <- という記号を使います.データに名前を付ける操作を代入といいます. 例:8 という数字を x という名前で登録します.名前は何でもいいのですが,数字で始まってはいけません. x <- 8 例:1, 2, 3, 4, 5 という5つの数字を x2 という名前で登録します.連続する整数は「:」を間に挟んで指定することができます. x2 <- 1
Rは統計解析のブッシュナイフだ 実践! Rで学ぶ統計解析の基礎(1) オープンソースの統計処理言語・環境の「R」を使って実践的な統計解析のテクニックとリテラシーを習得しよう!
ofmind.net 2020 Copyright. All Rights Reserved. The Sponsored Listings displayed above are served automatically by a third party. Neither the service provider nor the domain owner maintain any relationship with the advertisers. In case of trademark issues please contact the domain owner directly (contact information can be found in whois). Privacy Policy
はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、
今日は主座標分析(Principal Coordinate Analysis; PCoA)の紹介を簡単にしたいと思います。 主座標分析は古典的多次元尺度構成法(Classical Multidimensional Scaling; CMDS)とも呼ばれる統計解析手法です。 この解析手法を使用する主な目的は、高次元のデータを2次元や3次元に落として視覚化したいという時に使います。 以前紹介した主成分分析と同じような感じですね。*1 主成分分析との違いを簡単に言うと、主成分分析はユークリッド距離をなるべく保ちながら低次元に落とす方法ですが、主座標分析はユークリッド距離だけでなく、他の距離や類似度*2が使えるという点にあります。 例えば、ユークリッド距離の代わりに相関係数を使えば、相関の高いもの同士が近い配置になるようなプロットを作ることが可能です。 データを用意する さっそくやってみたいのです
2023/02/06追記: slideshareが非常に使いづらくなってしまったため、speakerdeckに転載しました。 https://speakerdeck.com/masaha03/hazimeteno-r 補足記事を書きました。併せてご覧ください。http://m884.hateblo.jp/entry/2012/12/03/232431Read less
Rは統計解析を行うことができる強力なツールです。計算上の信頼性はとても高く、世界中の分析者が日々分析用パッケージを公開しております。近年では行政機関で使われているという事例もちらほら聞きます。 ・姫路市役所での事例 これまでSASは使ってきたけどRは全く使ったことがない!JAVAとかC++とかガリガリ書けるけどRはよく分からない!という方々がすんなりRの世界に入れるよう、資料の探し場所や導入部分をまとめておきます。 ※まだ不完全ですが情報を入手し次第アップデートしていきます。 1. 資料を探す場所 CRAN R本体、パッケージ、PDF資料などの置き場 Task Viewに分野ごとのまとめ Searchでパッケージや資料の検索 CRANの読み方は「しーらん」派と「くらん」派でわかれる(どっちでもいいw) Rjpwiki 日本語で書かれている、これまでのRに関する資料の集大成 データの加工技、
興味を持ち続けていた統計解析や、R言語の勉強をはじめました! まだまだ初歩の初歩ですが、この記事がいつか偉大な一歩になれるように頑張っていく所存ですw まずは、R言語や統計解析に関する入門記事や、モチベーションがアップしそうな記事をまとめていきます! (02/23 11:00) 初学者の人にお勧めな資料にフォーカスしてまとめ直し 🍮 [スライド] 統計学入門 統計学の全体像をつかむのに最適なスライドです。初歩…とはちょっと呼べないくらい内容が深いです! 🏈 [スライド] 初めての「R」 統計解析を始めるときにWindowsな方も、Macな方もとっつきやすのが『R』です。このRを完全初心者をターゲットに説明をしていただけている資料です。超わかりやすいです! 🍄 [デスクトップアプリケーション] R用のIDE: RStudioRStudio RStudioはR言語用のIDEです。Wind
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く