[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

DeepLearningに関するhirorockのブックマーク (4)

  • VIBEで、人の動画から3Dモデルを推定する | cedro-blog

    1.はじめに 以前から人の動画から3Dモデルを推定する手法はありましたが、複雑な動きの場合は細部でゆがみやズレが生じていました。今回は、この問題点を改善したVIBEという技術をご紹介します。 *この論文は、2019.12に提出されました。 2.VIBEとは? VIBEとは、Video Inference for Body Pose and Shape Estimation の略で、ディープラーニング を使って、人の動画から3Dモデルを推定する技術です。 使用しているモデルは、SMPL (Skinned Multi-Person Linear model)と言う人間の自然なポーズにおける多種多様な体型を正確に表現するためのモデルです。 このモデルは、N=6890個の頂点を持っており、頂点の重み付き和からP=23個の関節位置を求めることが出来ます。 下記が、VIBEのアーキテクチャーです。入力

    hirorock
    hirorock 2020/12/16
    人の動きを推定 ダンスをほぼ完璧に推定できている
  • A3RT

    A3RTとは・・・・ A3RT(アート)は「ANALYTICS & ARTIFICIAL INTELLIGENCE API VIA RECRUIT TECHNOLOGIES」の略称です。 A3RTは機械学習のなかでもDeep Learningなどに代表される、いわば人工知能とよばれる分野のロジックをひとつのブランドで統一・整備をし、社内へ展開するためにプロジェクト化されたソリューションの総称です。 All PRODUCTS Listing API リスト生成をするためのAPIです。 ユーザーの行動ログを元にアイテム間の相関リストや、各ユーザーへのレコメンドリストなどを生成することが出来ます。 オンラインレコメンドや、ターゲティングメールなどに使用します。 モデルリングのためのデータを手元に用意していただければ、元データアップロード・リスト生成ロジック実行・リストダウンロードの機能が利用出来

    A3RT
    hirorock
    hirorock 2017/04/24
    AIのAPI リクルート
  • ディープラーニングで「インド人を右に」を理解する: Generative Adversarial Network による画像モーフィング - 加藤大晴のウェブサイト

    ディープラーニングで「インド人を右に」を理解する: Generative Adversarial Network による画像モーフィング 「インド人を右に」問題 インターネットを長く使っている方は、伝説の誤植「インド人を右に」 [1] についてご存知なのではないでしょうか。 「くお〜!! ぶつかる〜!! ここでアクセル全開、インド人を右に!」 この唐突に過ぎる意味不明な「インド人」は「ハンドル」の誤植であり、それはライターの手書きの文字が汚かったために発生したとされています。 …手書きの文字が汚かったとして、どうすれば「ハンドル」が「インド人」になるのか? 従来より、この問題について様々な考察がなされてきました。 ここでは、近年の技術の発展の成果を取り入れ、コンピュータに文字を書かせることによって「ハンドル」から「インド人」への変容についてアプローチしてみたいと思います。 # これは De

    hirorock
    hirorock 2016/12/07
    「ハンドル→インド人」に誤植する過程をディープラーニングを用いて推測 すごい!
  • 畳み込みニューラルネットワークの仕組み | POSTD

    (編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明

    畳み込みニューラルネットワークの仕組み | POSTD
  • 1