You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
データ分析における関数の使い方については様々な記事が上がっています。関数を知らなかったり使い方が分からないときは調べればだいたい答えが見つかります。 一方で、実際に分析を始めようとすると、たとえ関数の使い方がわかっていても、データをどのような切り口から何を分析・可視化していけば良いのか困ってしまうことがよくあります。 この記事では、あんちべさんが書いたデータ解析の実務プロセス入門という本をベースに、どのようなデータから何を見たいときにどのような可視化手法を使えばよいのかを、具体例を交えながら整理していきます。 探索的データ解析とは データ解析のアプローチは、大きく分けて仮説をデータで検証する「仮説検証型」とデータから仮説を生み出す「探索型」に分けられます。 実際にデータ解析を行うときは、仮説検証型と探索型を行き来しつつ知見を見出していきます。 データ解析には検証すべき仮説を設定することが必
ggplot2で可視化しようとして、データ系列が多すぎてこんなもじゃもじゃになってしまう、みたいなことないでしょうか。 これを、一部だけを色付けしてこんな感じのプロットにしてくれるパッケージをつくりました。 インストール GitHub上からインストールできます。 devtools::install_github("yutannihilation/gghighlight") gghiglightがやっていること gghiglightの説明をする前に、まずは上のグラフが何をしているのか、まずはふつうのtidyverseでやってみます。 データはこんな感じのやつです。 library(dplyr, warn.conflicts = FALSE) set.seed(1) d <- tibble( idx = 1:10000, value = runif(idx, -1, 1), type = sa
No sign up, no install. Chart with a single click. Compare queries side by side. Download your work and share it with anyone. SQL without the Ceremony No sign up, no install. Start playing with your data quickly and securely. If your data is in a CSV, JSON, or XLSX file, loading it is as simple as dropping the file into Franchise. We run a version of the SQLite engine in your browser, so all proce
Redash (re:dash) 流行ってますね。 redash.io 最近 Github をにわかに賑わせている OSS が superset です。 github.com superset とは 公式説明によると data exploration platform とのことですが、僕の感覚的にはこれはつまり、いわゆる Business Intelligence (以下 BI) Tool です。そう、Tableau のような。 OSS (Apache 2.0) サーバーサイドは Python で書かれている Flask や pandas、SQLAlchemy などを利用 さまざまなデータソースに対応 (MySQL, Redshift、SparkSQL など) グラフ描画の種類が豊富 Role や Permission についてある程度細かく設定可能 Airbnb Engineering
Google Data Studio (データスタジオ) という可視化サービスがベータ版で使えるようになっていたので試してみた 見たい数値を一覧するためのダッシュボード的なものを作るためのサービスなので、いろんな場所からデータを取ってきて一箇所でまとめて確認するのが用途っぽい(今のところ似たようなサービス・ツールの方が機能が多そう データソース データソースとしてGoogle AnalyticsやBigQuery、Google Spreadsheet、MySQLなどを選んでデータを取ってこれる データソースを選んでGUIでグラフやテキストを配置していく データの既存のフィールドに関数を適用した結果の値を使うこともできる 使える関数のリスト 下の画像ではGoogle Analyticsの「ブラウザ」(Chrome, Firefoxなど)と「ブラウザのバージョン」(バージョンの番号)をCONC
2016-08-31 に第10回 AIツールセミナー入門で行ったハンズオンの資料
Previously we wrote about our traffic intuition tool, Flux. We have some announcements and updates to share about this project. First, we have renamed the project to Vizceral. More importantly, Vizceral is now open source! Open SourceVizceral transformed the way we understand and digest information about the state of traffic flowing into the Netflix control plane. We wanted to be able to intuit de
After a recent stint in query optimization, I once again found myself wanting a better way to view query plans produced by EXPLAIN. So, I finally decided to do something about it and the result is Postgres EXPLAIN Visualizer (or Pev): Why Pev I wanted a tool that can make plans simple to understand and be visually pleasing. More specifically, I wanted: minimal visual noise insights high degree of
Bridge the gap between insights and action Empower app creators to build interactive analytics into products and applications that enable better decision-making. Go from data to actionable insights in minutes, not months Make app development more intuitive and accessible for users of all technical levels with AI-powered features that help build data-rich products.
Send feedback Sankey Diagram Stay organized with collections Save and categorize content based on your preferences. Overview A sankey diagram is a visualization used to depict a flow from one set of values to another. The things being connected are called nodes and the connections are called links. Sankeys are best used when you want to show a many-to-many mapping between two domains (e.g., univer
Analyze governed data, deliver business insights, and build AI-powered applications Build the foundation for responsible data insights with Looker. Leveraging Google’s deep roots and track record of AI-led innovation, Looker delivers the most intelligent BI solution by combining foundational AI, cloud-first infrastructure, industry leading APIs, and our flexible semantic layer.
ゴクロ改め、スマートニュース株式会社の大平です。 巷間では「bigdata」の活用が叫ばれて久しいですが、弊社はまだまだ小さい規模のスタートアップのため少なくともデータサイズとしてhugeなdataの活用が行える環境ではありません。 であればデータの活用に対する要求が低いか、というとそうでも無く、サービスサイドでも自然言語処理や機械学習を中心としたデータ解析処理がサービスの生命線となっていますし、サービスの裏側でも戦略を立てる上で効果測定や諸々のデータの分析は非常に重要な位置を占めています。 本記事では主にサービスの裏側で求められるデータ解析において、いかにカジュアルにデータを解析するか、の一例として、掲題のような組み合わせによるデータ可視化の事例を簡単にですがご紹介したいと思います。 データ解析基盤を作る側の視点からすると、システムとして求められる要件は以下のようなものだと理解していま
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く