TOP スペシャルコンテンツ CGWORLD vol.293(2023年1月号)、「アーティストのためのAI活用」特集号を先行告知! AIでクリエイティブはどう変わる? 基礎知識から実践例まで気になるAIを解説! こんにちは、CGWORLD編集部です。本日はCGWORLD vol.293(2022年12月9日発売)の特集内容をご案内します! 最新号では、2022年に大いに話題になったAIに注目! 今年は「DALL-E 2」、「Midjourney」、「Stable Diffusion」といった画像生成AIが多数リリースされ、注目を集めてきました。今後はAIによるコンテンツ制作が発展するのか? そもそもAIは仕事に使えるのか? そんなアーティストの疑問に答えるため、AIの概論から弁護士による著作権法の解説、ユーザー事例まで、AIをイチから知るための多様な情報を紹介していきます。 CGWORL
English PRESS RELEASE (技術) 2020年7月13日 株式会社富士通研究所 世界初!教師データなしで高次元データの特徴を正確に獲得できるAI技術を開発 様々なAI技術の判断精度向上に貢献 株式会社富士通研究所(注1)は、AIによる検知・判断における精度向上に向け、高次元データの分布・確率などの本質的な特徴量を正確に獲得するAI技術「DeepTwin(ディープツイン)」を世界で初めて開発しました。 近年、様々なビジネスの領域において、膨大かつ多様なデータをAIで解析する需要が急激に増加しています。通常、AIの学習には大量の教師データが必要となりますが、教師データの作成に要する時間・工数などのコストがかかるため、正解ラベルを付与しない教師なし学習の必要性が増しています。しかし、通信や画像など、扱うデータが高次元の場合は、データの特徴を獲得するのが計算量の観点で困難なため、
富士通研究所は2020年7月13日、ディープラーニング(深層学習)における教師なし学習の精度を大幅に向上できる人工知能(AI)技術「DeepTwin」を発表した。AI分野の長年の課題だった「次元の呪い」を、映像圧縮技術の知見を活用することで解決したとする。同社は論文を機械学習の最有力学会である「ICML 2020」で7月14日に発表する。 「次元の呪い」とは、データの次元(要素数)が大きくなると、そのデータを分析する際の計算量が指数関数的に増大する現象を指す。次元の呪いを回避するため、一般的に機械学習の高次元データは次元を減らす。 ただ従来の手法には、次元の削減に伴ってデータの分布や確率が不正確になる課題があり、それがAIの精度低下を招く一因になっていた。例えば分布や確率が実際と異なると、正常データを異常と誤判定してしまうような間違いを引き起こしてしまう。 富士通研究所は今回、ディープラー
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く