はてなキーワード: 線形空間とは
そのslideshareの人はただのgiftedなのでもう少し他のを参考にした方がいいと思う。
機械学習に興味を持ってビショップ本に行くのもあまりお勧めできない。
過剰にベイジアンだし実際問題あそこまで徹底的にベイズにする必要は無いことも多いから。
よく知らんけどMRIとかの方面もだいぶ魑魅魍魎なので(DTIとか微分幾何学的な話がモリモリ出てくる)、
近づくなら覚悟と見通しを持ってやった方がいいんじゃないかなあという気はする。
オライリーの本は読んだことないけど悪くなさそう。「わかパタ」とか「続パタ」とかは定番でよい。
ビッグデータがどうとか世間では言ってるけど、データのビッグさはあんま気にしなくていいと思う。
ビッグデータを処理するためのインフラ技術というものはあるけど、数理的な手法としては別に大して変わらない。
(オンライン学習とか分散学習とかの手法はあるけど、わざわざそっち方面に行く意味も無いと思う。
超大規模遺伝子データベースからパターン検出したい、とかだとその辺が必要かもしれないけど…)
数学については、線形代数は本当に全ての基礎なのでやはり分かっておくとよい。
「キーポイント線形代数」とか「なっとくする行列・ベクトル」とか、他にも色々わかりやすいいい本がある。
(まあ固有値と固有ベクトルが計算できて計量線形空間のイメージがわかって行列式とかトレースとかにまつわる計算が手に馴染むくらい。ジョルダン標準形とかは別にいらん)
プログラミングはそのくらいやってるならそれでいいんじゃないか、という気はする。行列演算が入る適当なアルゴリズム(カルマンフィルタとか)が書けるくらいか。かく言う俺もあまり人の事は言えないけど。
処理をなるべく簡潔かつ構造的に関数に分割したり、抽象化して(同じ処理をする)異なるアルゴリズムに対するインターフェースを共通化したりとかのプログラミング技術的なところも意識できるとなおよい。
ggplot2は独自の世界観ですげえ構造化してあるんだけどやりすぎてて逆に使いづらい…と俺は思う…。
遺伝子のネットワークとかなんかそれ系の話をし出すと離散数学的なアルゴリズムが必要になってきて一気に辛くなるが、必要性を感じるまでは無視かなあ。
プログラミングの学習は向き不向きが本当に強烈で、個々人の脳の傾向によってどうしたらいいかが結構異なる気がしてる。
向いてるなら割とホイホイ書けるようになっちゃうし、向いてないなら(俺もだけど)試行錯誤が必要になる。
まあせいぜい頑張りましょう。
それはさすがにレベル低過ぎじゃね???
俺が学生の頃は「あの子と内積とりたい」とか(ディラックのブラケットを思い浮かべること)、数少ない女の子に群がる男を見て「ボーズアインシュタイン凝縮してる」とか、そういうのが普通に日常会話だったが。
今は社会に出てるので線形代数あたりのネタが多いな。内積も当然線形空間ネタなんだが、なんというか、ディラック記法を踏まえた文脈かどうかの違いが本質的。物理系のヒルベルト空間は必然的にその上に作用する作用素とセットだから。
そもそも例えじゃなくて文化資本の格差を時間の関数と見たときの厳密な表現だぞ。
他の科ならわざわざ数学に例えるなんてひくわぁ
文系ならそうだろうけど、理系でそれ言うと自分の馬鹿さ加減を宣伝してることになるぞ。
まともな理系の知識持ってる人間だったら「2階微分」で意味不明と思うなんて有り得ないよ。
うちの会社とか、どう逆立ちしても入社すらできないだろうなあ。
しかしこういう「勉強ダセェw」みたいな子、10年ぶりくらいに見たな…。なんか懐かしい感じ。どういうバックグラウンドの子なんだろう。
そもそも空間に内積が入ってるというのは、内積から自然に誘導されるノルムや距離や位相がある空間だということだ。
ノルム、距離、位相だけでは記述できない、内積によって規定される構造というのは、角度であり特に重要なのは直交という概念だね。
直交性というのは、その(線形)空間の中である意味「お互いに独立」な要素を決める。
n次元ユークリッド空間なら、n本の直交なベクトルを定義することができて、空間中の点はそれぞれのベクトルの方向に、「他のベクトルの方向には影響を与えず」独立に動かすことができる。
逆に、平行なベクトル同士では、互いに完全に影響を与え合う形でしか動かすことができない。平行性も内積によって定義される性質であり、これを従属と言う。
n本以下の平行でない適当なベクトルの組を持ってきたときに、内積を使って直交したベクトルの組を得ることもできる。グラムシュミットの直交化とかで。
空間中の直交なベクトルの組を見出すということは、空間の性質をかなり詳しく知るということになっていて、そのための演算として空間に定義された内積は超重要。
ベクトルに関する操作は、和、スカラー倍、ノルム、そして内積くらいしか高校では使っていない。内積という操作を禁止すると何ができなくなるかを考えてみるといい。
ちなみに内積は標準内積と呼ばれる高校で習う定義に限るものではなくて、内積の公理を満たす演算ならなんでもいい。
これは逆に空間にどういう構造を入れるか?というユーザの意思や物理的要請から決まるもの。内積の定義が各点で変わるような空間もあって、これは空間が曲がっているということに対応する。
ユークリッド空間みたいに平坦で内積が一様な空間というのは特別な空間ということだな。
また、線形空間という概念は実はユークリッド空間に限ったものでもなくて、空間の元に対して和やスカラー倍、単位元や逆元が定義されていて、いくつかの性質を満たせばよい。
これは例えば関数をたくさん集めてきた関数空間についても成り立つことがあって、そこに内積を定義することでユークリッド空間のベクトルの議論と完全に同じ話をすることができる。
俺の高校時代の物理の教師はまだマシだったかな。それでも今にして思えば分かってねーなというところはあるが。
数学教師の方が数が圧倒的に多いから、変なのに当たる確率も高かったのかもしれない。