@inproceedings{hrabal-etal-2024-cuni,
title = "{CUNI} at {WMT}24 General Translation Task: {LLM}s, ({Q}){L}o{RA}, {CPO} and Model Merging",
author = "Hrabal, Miroslav and
Jon, Josef and
Popel, Martin and
Luu, Nam and
Semin, Danil and
Bojar, Ond{\v{r}}ej",
editor = "Haddow, Barry and
Kocmi, Tom and
Koehn, Philipp and
Monz, Christof",
booktitle = "Proceedings of the Ninth Conference on Machine Translation",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.wmt-1.16",
doi = "10.18653/v1/2024.wmt-1.16",
pages = "232--246",
abstract = "This paper presents the contributions of Charles University teams to the WMT24 General Translation task (English to Czech, German and Russian, and Czech to Ukrainian), and the WMT24 Translation into Low-Resource Languages of Spain task.Our most elaborate submission, CUNI-MH for en2cs, is the result of fine-tuning Mistral 7B v0.1 for translation using a three-stage process: Supervised fine-tuning using QLoRA, Contrastive Preference Optimization, and merging of model checkpoints. We also describe the CUNI-GA, CUNI-Transformer and CUNI-DocTransformer submissions, which are based on our systems from the previous year.Our en2ru system CUNI-DS uses a similar first stage as CUNI-MH (QLoRA for en2cs) and follows with transferring to en2ru.For en2de (CUNI-NL), we experimented with a LLM-based speech translation system, to translate without the speech input.For the Translation into Low-Resource Languages of Spain task, we performed QLoRA fine-tuning of a large LLM on a small amount of synthetic (backtranslated) data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hrabal-etal-2024-cuni">
<titleInfo>
<title>CUNI at WMT24 General Translation Task: LLMs, (Q)LoRA, CPO and Model Merging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miroslav</namePart>
<namePart type="family">Hrabal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Jon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nam</namePart>
<namePart type="family">Luu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danil</namePart>
<namePart type="family">Semin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the contributions of Charles University teams to the WMT24 General Translation task (English to Czech, German and Russian, and Czech to Ukrainian), and the WMT24 Translation into Low-Resource Languages of Spain task.Our most elaborate submission, CUNI-MH for en2cs, is the result of fine-tuning Mistral 7B v0.1 for translation using a three-stage process: Supervised fine-tuning using QLoRA, Contrastive Preference Optimization, and merging of model checkpoints. We also describe the CUNI-GA, CUNI-Transformer and CUNI-DocTransformer submissions, which are based on our systems from the previous year.Our en2ru system CUNI-DS uses a similar first stage as CUNI-MH (QLoRA for en2cs) and follows with transferring to en2ru.For en2de (CUNI-NL), we experimented with a LLM-based speech translation system, to translate without the speech input.For the Translation into Low-Resource Languages of Spain task, we performed QLoRA fine-tuning of a large LLM on a small amount of synthetic (backtranslated) data.</abstract>
<identifier type="citekey">hrabal-etal-2024-cuni</identifier>
<identifier type="doi">10.18653/v1/2024.wmt-1.16</identifier>
<location>
<url>https://aclanthology.org/2024.wmt-1.16</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>232</start>
<end>246</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CUNI at WMT24 General Translation Task: LLMs, (Q)LoRA, CPO and Model Merging
%A Hrabal, Miroslav
%A Jon, Josef
%A Popel, Martin
%A Luu, Nam
%A Semin, Danil
%A Bojar, Ondřej
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Koehn, Philipp
%Y Monz, Christof
%S Proceedings of the Ninth Conference on Machine Translation
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F hrabal-etal-2024-cuni
%X This paper presents the contributions of Charles University teams to the WMT24 General Translation task (English to Czech, German and Russian, and Czech to Ukrainian), and the WMT24 Translation into Low-Resource Languages of Spain task.Our most elaborate submission, CUNI-MH for en2cs, is the result of fine-tuning Mistral 7B v0.1 for translation using a three-stage process: Supervised fine-tuning using QLoRA, Contrastive Preference Optimization, and merging of model checkpoints. We also describe the CUNI-GA, CUNI-Transformer and CUNI-DocTransformer submissions, which are based on our systems from the previous year.Our en2ru system CUNI-DS uses a similar first stage as CUNI-MH (QLoRA for en2cs) and follows with transferring to en2ru.For en2de (CUNI-NL), we experimented with a LLM-based speech translation system, to translate without the speech input.For the Translation into Low-Resource Languages of Spain task, we performed QLoRA fine-tuning of a large LLM on a small amount of synthetic (backtranslated) data.
%R 10.18653/v1/2024.wmt-1.16
%U https://aclanthology.org/2024.wmt-1.16
%U https://doi.org/10.18653/v1/2024.wmt-1.16
%P 232-246
Markdown (Informal)
[CUNI at WMT24 General Translation Task: LLMs, (Q)LoRA, CPO and Model Merging](https://aclanthology.org/2024.wmt-1.16) (Hrabal et al., WMT 2024)
ACL
- Miroslav Hrabal, Josef Jon, Martin Popel, Nam Luu, Danil Semin, and Ondřej Bojar. 2024. CUNI at WMT24 General Translation Task: LLMs, (Q)LoRA, CPO and Model Merging. In Proceedings of the Ninth Conference on Machine Translation, pages 232–246, Miami, Florida, USA. Association for Computational Linguistics.