@inproceedings{kumari-etal-2024-unintended,
title = "Unintended Bias Detection and Mitigation in Misogynous Memes",
author = "Kumari, Gitanjali and
Sinha, Anubhav and
Ekbal, Asif",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-long.166",
pages = "2719--2733",
abstract = "Online sexism has become a concerning issue in recent years, especially conveyed through memes. Although this alarming phenomenon has triggered many studies from computational linguistic and natural language processing points of view, less effort has been spent analyzing if those misogyny detection models are affected by an unintended bias. Such biases can lead models to incorrectly label non-misogynous memes misogynous due to specific identity terms, perpetuating harmful stereotypes and reinforcing negative attitudes. This paper presents the first and most comprehensive approach to measure and mitigate unintentional bias in the misogynous memes detection model, aiming to develop effective strategies to counter their harmful impact. Our proposed model, the \textbf{C}on\textbf{t}e\textbf{x}tualized \textbf{S}cene \textbf{G}raph-based \textbf{M}ultimodal \textbf{Net}work (CTXSGMNet), is an integrated architecture that combines VisualBERT, a CLIP-LSTM-based memory network, and an unbiased scene graph module with supervised contrastive loss, achieves state-of-the-art performance in mitigating unintentional bias in misogynous memes.Empirical evaluation, including both qualitative and quantitative analysis, demonstrates the effectiveness of our CTXSGMNet framework on the SemEval-2022 Task 5 (\textbf{MAMI} task) dataset, showcasing its promising performance in terms of Equity of Odds and F1 score. Additionally, we assess the generalizability of the proposed model by evaluating their performance on a few benchmark meme datasets, providing a comprehensive understanding of our approach{'}s efficacy across diverse datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumari-etal-2024-unintended">
<titleInfo>
<title>Unintended Bias Detection and Mitigation in Misogynous Memes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gitanjali</namePart>
<namePart type="family">Kumari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anubhav</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online sexism has become a concerning issue in recent years, especially conveyed through memes. Although this alarming phenomenon has triggered many studies from computational linguistic and natural language processing points of view, less effort has been spent analyzing if those misogyny detection models are affected by an unintended bias. Such biases can lead models to incorrectly label non-misogynous memes misogynous due to specific identity terms, perpetuating harmful stereotypes and reinforcing negative attitudes. This paper presents the first and most comprehensive approach to measure and mitigate unintentional bias in the misogynous memes detection model, aiming to develop effective strategies to counter their harmful impact. Our proposed model, the Contextualized Scene Graph-based Multimodal Network (CTXSGMNet), is an integrated architecture that combines VisualBERT, a CLIP-LSTM-based memory network, and an unbiased scene graph module with supervised contrastive loss, achieves state-of-the-art performance in mitigating unintentional bias in misogynous memes.Empirical evaluation, including both qualitative and quantitative analysis, demonstrates the effectiveness of our CTXSGMNet framework on the SemEval-2022 Task 5 (MAMI task) dataset, showcasing its promising performance in terms of Equity of Odds and F1 score. Additionally, we assess the generalizability of the proposed model by evaluating their performance on a few benchmark meme datasets, providing a comprehensive understanding of our approach’s efficacy across diverse datasets.</abstract>
<identifier type="citekey">kumari-etal-2024-unintended</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-long.166</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>2719</start>
<end>2733</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unintended Bias Detection and Mitigation in Misogynous Memes
%A Kumari, Gitanjali
%A Sinha, Anubhav
%A Ekbal, Asif
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F kumari-etal-2024-unintended
%X Online sexism has become a concerning issue in recent years, especially conveyed through memes. Although this alarming phenomenon has triggered many studies from computational linguistic and natural language processing points of view, less effort has been spent analyzing if those misogyny detection models are affected by an unintended bias. Such biases can lead models to incorrectly label non-misogynous memes misogynous due to specific identity terms, perpetuating harmful stereotypes and reinforcing negative attitudes. This paper presents the first and most comprehensive approach to measure and mitigate unintentional bias in the misogynous memes detection model, aiming to develop effective strategies to counter their harmful impact. Our proposed model, the Contextualized Scene Graph-based Multimodal Network (CTXSGMNet), is an integrated architecture that combines VisualBERT, a CLIP-LSTM-based memory network, and an unbiased scene graph module with supervised contrastive loss, achieves state-of-the-art performance in mitigating unintentional bias in misogynous memes.Empirical evaluation, including both qualitative and quantitative analysis, demonstrates the effectiveness of our CTXSGMNet framework on the SemEval-2022 Task 5 (MAMI task) dataset, showcasing its promising performance in terms of Equity of Odds and F1 score. Additionally, we assess the generalizability of the proposed model by evaluating their performance on a few benchmark meme datasets, providing a comprehensive understanding of our approach’s efficacy across diverse datasets.
%U https://aclanthology.org/2024.eacl-long.166
%P 2719-2733
Markdown (Informal)
[Unintended Bias Detection and Mitigation in Misogynous Memes](https://aclanthology.org/2024.eacl-long.166) (Kumari et al., EACL 2024)
ACL
- Gitanjali Kumari, Anubhav Sinha, and Asif Ekbal. 2024. Unintended Bias Detection and Mitigation in Misogynous Memes. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2719–2733, St. Julian’s, Malta. Association for Computational Linguistics.