@inproceedings{tanev-2024-jrc,
title = "{JRC} at {C}limate{A}ctivism 2024: Lexicon-based Detection of Hate Speech",
author = "Tanev, Hristo",
editor = {H{\"u}rriyeto{\u{g}}lu, Ali and
Tanev, Hristo and
Thapa, Surendrabikram and
Uludo{\u{g}}an, G{\"o}k{\c{c}}e},
booktitle = "Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.case-1.11/",
pages = "85--88",
abstract = "In this paper we describe the participation of the JRC team in the Sub-task A: {\textquotedblleft}Hate Speech Detection{\textquotedblright} in the Shared task on Hate Speech and Stance Detection during Climate Activism at the CASE 2024 workshop. Our system is purely lexicon (keyword) based and does not use any statistical classifier. The system ranked 18 out of 22 participants with F1 of 0.83, only one point below a system, based on LLM. Our system also obtained one the highest achieved precision scores among all participating algo- rithms."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tanev-2024-jrc">
<titleInfo>
<title>JRC at ClimateActivism 2024: Lexicon-based Detection of Hate Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surendrabikram</namePart>
<namePart type="family">Thapa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gökçe</namePart>
<namePart type="family">Uludoğan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe the participation of the JRC team in the Sub-task A: “Hate Speech Detection” in the Shared task on Hate Speech and Stance Detection during Climate Activism at the CASE 2024 workshop. Our system is purely lexicon (keyword) based and does not use any statistical classifier. The system ranked 18 out of 22 participants with F1 of 0.83, only one point below a system, based on LLM. Our system also obtained one the highest achieved precision scores among all participating algo- rithms.</abstract>
<identifier type="citekey">tanev-2024-jrc</identifier>
<location>
<url>https://aclanthology.org/2024.case-1.11/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>85</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JRC at ClimateActivism 2024: Lexicon-based Detection of Hate Speech
%A Tanev, Hristo
%Y Hürriyetoğlu, Ali
%Y Tanev, Hristo
%Y Thapa, Surendrabikram
%Y Uludoğan, Gökçe
%S Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F tanev-2024-jrc
%X In this paper we describe the participation of the JRC team in the Sub-task A: “Hate Speech Detection” in the Shared task on Hate Speech and Stance Detection during Climate Activism at the CASE 2024 workshop. Our system is purely lexicon (keyword) based and does not use any statistical classifier. The system ranked 18 out of 22 participants with F1 of 0.83, only one point below a system, based on LLM. Our system also obtained one the highest achieved precision scores among all participating algo- rithms.
%U https://aclanthology.org/2024.case-1.11/
%P 85-88
Markdown (Informal)
[JRC at ClimateActivism 2024: Lexicon-based Detection of Hate Speech](https://aclanthology.org/2024.case-1.11/) (Tanev, CASE 2024)
ACL