@inproceedings{schoots-2023-analyzing,
title = "Analyzing political formation through historical isi{X}hosa text analysis: Using frequency analysis to examine emerging {A}frican Nationalism in {S}outh {A}frica",
author = "Schoots, Jonathan",
editor = "Mabuya, Rooweither and
Mthobela, Don and
Setaka, Mmasibidi and
Van Zaanen, Menno",
booktitle = "Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.rail-1.8/",
doi = "10.18653/v1/2023.rail-1.8",
pages = "65--75",
abstract = "This paper showcases new research avenues made possible by applying computational methods to historical isiXhosa text. I outline a method for isiXhosa computational text analysis which adapts word frequency analysis to be applied to isiXhosa texts focusing on root words. The paper showcases the value of the approach in a study of emerging political identities in early African nationalism, examining a novel dataset of isiXhosa newspapers from 1874 to 1890. The analysis shows how a shared identity of {\textquoteleft}Blackness' (Abantsundu and Abamnyama) dynamically emerged, and follows the impact of leading intellectuals as well as African voter mobilization in shaping communal political discourse."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schoots-2023-analyzing">
<titleInfo>
<title>Analyzing political formation through historical isiXhosa text analysis: Using frequency analysis to examine emerging African Nationalism in South Africa</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Schoots</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rooweither</namePart>
<namePart type="family">Mabuya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Don</namePart>
<namePart type="family">Mthobela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mmasibidi</namePart>
<namePart type="family">Setaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Menno</namePart>
<namePart type="family">Van Zaanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper showcases new research avenues made possible by applying computational methods to historical isiXhosa text. I outline a method for isiXhosa computational text analysis which adapts word frequency analysis to be applied to isiXhosa texts focusing on root words. The paper showcases the value of the approach in a study of emerging political identities in early African nationalism, examining a novel dataset of isiXhosa newspapers from 1874 to 1890. The analysis shows how a shared identity of ‘Blackness’ (Abantsundu and Abamnyama) dynamically emerged, and follows the impact of leading intellectuals as well as African voter mobilization in shaping communal political discourse.</abstract>
<identifier type="citekey">schoots-2023-analyzing</identifier>
<identifier type="doi">10.18653/v1/2023.rail-1.8</identifier>
<location>
<url>https://aclanthology.org/2023.rail-1.8/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>65</start>
<end>75</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing political formation through historical isiXhosa text analysis: Using frequency analysis to examine emerging African Nationalism in South Africa
%A Schoots, Jonathan
%Y Mabuya, Rooweither
%Y Mthobela, Don
%Y Setaka, Mmasibidi
%Y Van Zaanen, Menno
%S Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F schoots-2023-analyzing
%X This paper showcases new research avenues made possible by applying computational methods to historical isiXhosa text. I outline a method for isiXhosa computational text analysis which adapts word frequency analysis to be applied to isiXhosa texts focusing on root words. The paper showcases the value of the approach in a study of emerging political identities in early African nationalism, examining a novel dataset of isiXhosa newspapers from 1874 to 1890. The analysis shows how a shared identity of ‘Blackness’ (Abantsundu and Abamnyama) dynamically emerged, and follows the impact of leading intellectuals as well as African voter mobilization in shaping communal political discourse.
%R 10.18653/v1/2023.rail-1.8
%U https://aclanthology.org/2023.rail-1.8/
%U https://doi.org/10.18653/v1/2023.rail-1.8
%P 65-75
Markdown (Informal)
[Analyzing political formation through historical isiXhosa text analysis: Using frequency analysis to examine emerging African Nationalism in South Africa](https://aclanthology.org/2023.rail-1.8/) (Schoots, RAIL 2023)
ACL