@inproceedings{wu-etal-2023-connective,
title = "Connective Prediction for Implicit Discourse Relation Recognition via Knowledge Distillation",
author = "Wu, Hongyi and
Zhou, Hao and
Lan, Man and
Wu, Yuanbin and
Zhang, Yadong",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.325/",
doi = "10.18653/v1/2023.acl-long.325",
pages = "5908--5923",
abstract = "Implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis due to the absence of connectives. Most existing methods utilize one-hot labels as the sole optimization target, ignoring the internal association among connectives. Besides, these approaches spend lots of effort on template construction, negatively affecting the generalization capability. To address these problems,we propose a novel Connective Prediction via Knowledge Distillation (CP-KD) approach to instruct large-scale pre-trained language models (PLMs) mining the latent correlations between connectives and discourse relations, which is meaningful for IDRR. Experimental results on the PDTB 2.0/3.0 and CoNLL2016 datasets show that our method significantly outperforms the state-of-the-art models on coarse-grained and fine-grained discourse relations. Moreover, our approach can be transferred to explicit discourse relation recognition(EDRR) and achieve acceptable performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2023-connective">
<titleInfo>
<title>Connective Prediction for Implicit Discourse Relation Recognition via Knowledge Distillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongyi</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis due to the absence of connectives. Most existing methods utilize one-hot labels as the sole optimization target, ignoring the internal association among connectives. Besides, these approaches spend lots of effort on template construction, negatively affecting the generalization capability. To address these problems,we propose a novel Connective Prediction via Knowledge Distillation (CP-KD) approach to instruct large-scale pre-trained language models (PLMs) mining the latent correlations between connectives and discourse relations, which is meaningful for IDRR. Experimental results on the PDTB 2.0/3.0 and CoNLL2016 datasets show that our method significantly outperforms the state-of-the-art models on coarse-grained and fine-grained discourse relations. Moreover, our approach can be transferred to explicit discourse relation recognition(EDRR) and achieve acceptable performance.</abstract>
<identifier type="citekey">wu-etal-2023-connective</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.325</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.325/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>5908</start>
<end>5923</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Connective Prediction for Implicit Discourse Relation Recognition via Knowledge Distillation
%A Wu, Hongyi
%A Zhou, Hao
%A Lan, Man
%A Wu, Yuanbin
%A Zhang, Yadong
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F wu-etal-2023-connective
%X Implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis due to the absence of connectives. Most existing methods utilize one-hot labels as the sole optimization target, ignoring the internal association among connectives. Besides, these approaches spend lots of effort on template construction, negatively affecting the generalization capability. To address these problems,we propose a novel Connective Prediction via Knowledge Distillation (CP-KD) approach to instruct large-scale pre-trained language models (PLMs) mining the latent correlations between connectives and discourse relations, which is meaningful for IDRR. Experimental results on the PDTB 2.0/3.0 and CoNLL2016 datasets show that our method significantly outperforms the state-of-the-art models on coarse-grained and fine-grained discourse relations. Moreover, our approach can be transferred to explicit discourse relation recognition(EDRR) and achieve acceptable performance.
%R 10.18653/v1/2023.acl-long.325
%U https://aclanthology.org/2023.acl-long.325/
%U https://doi.org/10.18653/v1/2023.acl-long.325
%P 5908-5923
Markdown (Informal)
[Connective Prediction for Implicit Discourse Relation Recognition via Knowledge Distillation](https://aclanthology.org/2023.acl-long.325/) (Wu et al., ACL 2023)
ACL