@inproceedings{zeng-etal-2022-semi,
title = "Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems",
author = "Zeng, Weihao and
He, Keqing and
Wang, Zechen and
Fu, Dayuan and
Dong, Guanting and
Geng, Ruotong and
Wang, Pei and
Wang, Jingang and
Sun, Chaobo and
Wu, Wei and
Xu, Weiran",
editor = "Ou, Zhijian and
Feng, Junlan and
Li, Juanzi",
booktitle = "Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)",
month = dec,
year = "2022",
address = "Abu Dhabi, Beijing (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.seretod-1.6/",
doi = "10.18653/v1/2022.seretod-1.6",
pages = "39--47",
abstract = "Recent advances in neural approaches greatly improve task-oriented dialogue (TOD) systems which assist users to accomplish their goals. However, such systems rely on costly manually labeled dialogs which are not available in practical scenarios. In this paper, we present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semisupervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model to formulate dialog history and local KB as input and predict the system response. And we perform semi-supervised pretraining both on the labeled and unlabeled data. Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6{\%}) than the second place."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2022-semi">
<titleInfo>
<title>Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weihao</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keqing</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zechen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dayuan</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanting</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruotong</namePart>
<namePart type="family">Geng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaobo</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiran</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhijian</namePart>
<namePart type="family">Ou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junlan</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juanzi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, Beijing (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advances in neural approaches greatly improve task-oriented dialogue (TOD) systems which assist users to accomplish their goals. However, such systems rely on costly manually labeled dialogs which are not available in practical scenarios. In this paper, we present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semisupervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model to formulate dialog history and local KB as input and predict the system response. And we perform semi-supervised pretraining both on the labeled and unlabeled data. Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6%) than the second place.</abstract>
<identifier type="citekey">zeng-etal-2022-semi</identifier>
<identifier type="doi">10.18653/v1/2022.seretod-1.6</identifier>
<location>
<url>https://aclanthology.org/2022.seretod-1.6/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>39</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems
%A Zeng, Weihao
%A He, Keqing
%A Wang, Zechen
%A Fu, Dayuan
%A Dong, Guanting
%A Geng, Ruotong
%A Wang, Pei
%A Wang, Jingang
%A Sun, Chaobo
%A Wu, Wei
%A Xu, Weiran
%Y Ou, Zhijian
%Y Feng, Junlan
%Y Li, Juanzi
%S Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, Beijing (Hybrid)
%F zeng-etal-2022-semi
%X Recent advances in neural approaches greatly improve task-oriented dialogue (TOD) systems which assist users to accomplish their goals. However, such systems rely on costly manually labeled dialogs which are not available in practical scenarios. In this paper, we present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semisupervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model to formulate dialog history and local KB as input and predict the system response. And we perform semi-supervised pretraining both on the labeled and unlabeled data. Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6%) than the second place.
%R 10.18653/v1/2022.seretod-1.6
%U https://aclanthology.org/2022.seretod-1.6/
%U https://doi.org/10.18653/v1/2022.seretod-1.6
%P 39-47
Markdown (Informal)
[Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems](https://aclanthology.org/2022.seretod-1.6/) (Zeng et al., SereTOD 2022)
ACL
- Weihao Zeng, Keqing He, Zechen Wang, Dayuan Fu, Guanting Dong, Ruotong Geng, Pei Wang, Jingang Wang, Chaobo Sun, Wei Wu, and Weiran Xu. 2022. Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems. In Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD), pages 39–47, Abu Dhabi, Beijing (Hybrid). Association for Computational Linguistics.