@inproceedings{hofmann-etal-2022-embarrassingly,
title = "An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers",
author = "Hofmann, Valentin and
Schuetze, Hinrich and
Pierrehumbert, Janet",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-short.43",
doi = "10.18653/v1/2022.acl-short.43",
pages = "385--393",
abstract = "We introduce FLOTA (Few Longest Token Approximation), a simple yet effective method to improve the tokenization of pretrained language models (PLMs). FLOTA uses the vocabulary of a standard tokenizer but tries to preserve the morphological structure of words during tokenization. We evaluate FLOTA on morphological gold segmentations as well as a text classification task, using BERT, GPT-2, and XLNet as example PLMs. FLOTA leads to performance gains, makes inference more efficient, and enhances the robustness of PLMs with respect to whitespace noise.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hofmann-etal-2022-embarrassingly">
<titleInfo>
<title>An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Hofmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schuetze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janet</namePart>
<namePart type="family">Pierrehumbert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce FLOTA (Few Longest Token Approximation), a simple yet effective method to improve the tokenization of pretrained language models (PLMs). FLOTA uses the vocabulary of a standard tokenizer but tries to preserve the morphological structure of words during tokenization. We evaluate FLOTA on morphological gold segmentations as well as a text classification task, using BERT, GPT-2, and XLNet as example PLMs. FLOTA leads to performance gains, makes inference more efficient, and enhances the robustness of PLMs with respect to whitespace noise.</abstract>
<identifier type="citekey">hofmann-etal-2022-embarrassingly</identifier>
<identifier type="doi">10.18653/v1/2022.acl-short.43</identifier>
<location>
<url>https://aclanthology.org/2022.acl-short.43</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>385</start>
<end>393</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers
%A Hofmann, Valentin
%A Schuetze, Hinrich
%A Pierrehumbert, Janet
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F hofmann-etal-2022-embarrassingly
%X We introduce FLOTA (Few Longest Token Approximation), a simple yet effective method to improve the tokenization of pretrained language models (PLMs). FLOTA uses the vocabulary of a standard tokenizer but tries to preserve the morphological structure of words during tokenization. We evaluate FLOTA on morphological gold segmentations as well as a text classification task, using BERT, GPT-2, and XLNet as example PLMs. FLOTA leads to performance gains, makes inference more efficient, and enhances the robustness of PLMs with respect to whitespace noise.
%R 10.18653/v1/2022.acl-short.43
%U https://aclanthology.org/2022.acl-short.43
%U https://doi.org/10.18653/v1/2022.acl-short.43
%P 385-393
Markdown (Informal)
[An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers](https://aclanthology.org/2022.acl-short.43) (Hofmann et al., ACL 2022)
ACL