@inproceedings{li-etal-2021-ji,
title = "基于人物特征增强的拟人句要素抽取方法研究(Research on Element Extraction of Personified Sentences Based on Enhanced Characters)",
author = "Li, Jing and
Wang, Suge and
Chen, Xin and
Wang, Dian",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2021.ccl-1.55/",
pages = "612--621",
language = "zho",
abstract = "在散文阅读理解的鉴赏类问题中,对拟人句赏析考查比较频繁。目前,已有的工作仅对拟人句中的本体要素进行识别并抽取,存在要素抽取不完整的问题,尤其是当句子中出现多个本体时,需要确定拟人词与各个本体的对应关系。为解决这些问题,本文提出了基于人物特征增强的拟人句要素抽取方法。该方法利用特定领域的特征,增强句子的向量表示,再利用条件随机场模型对拟人句中的本体和拟人词要素进行识别。在此基础上,利用自注意力机制对要素之间的关系进行检测,使用要素同步机制和关系同步机制进行信息交互,用于要素识别和关系检测的输入更新。在自建的拟人数据集上进行{\ensuremath{<}}本体,拟人词{\ensuremath{>}}抽取的比较实验,结果表明本文提出的模型性能优于其他比较模型。"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2021-ji">
<titleInfo>
<title>基于人物特征增强的拟人句要素抽取方法研究(Research on Element Extraction of Personified Sentences Based on Enhanced Characters)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suge</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dian</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Huhhot, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>在散文阅读理解的鉴赏类问题中,对拟人句赏析考查比较频繁。目前,已有的工作仅对拟人句中的本体要素进行识别并抽取,存在要素抽取不完整的问题,尤其是当句子中出现多个本体时,需要确定拟人词与各个本体的对应关系。为解决这些问题,本文提出了基于人物特征增强的拟人句要素抽取方法。该方法利用特定领域的特征,增强句子的向量表示,再利用条件随机场模型对拟人句中的本体和拟人词要素进行识别。在此基础上,利用自注意力机制对要素之间的关系进行检测,使用要素同步机制和关系同步机制进行信息交互,用于要素识别和关系检测的输入更新。在自建的拟人数据集上进行\ensuremath<本体,拟人词\ensuremath>抽取的比较实验,结果表明本文提出的模型性能优于其他比较模型。</abstract>
<identifier type="citekey">li-etal-2021-ji</identifier>
<location>
<url>https://aclanthology.org/2021.ccl-1.55/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>612</start>
<end>621</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于人物特征增强的拟人句要素抽取方法研究(Research on Element Extraction of Personified Sentences Based on Enhanced Characters)
%A Li, Jing
%A Wang, Suge
%A Chen, Xin
%A Wang, Dian
%Y Li, Sheng
%Y Sun, Maosong
%Y Liu, Yang
%Y Wu, Hua
%Y Liu, Kang
%Y Che, Wanxiang
%Y He, Shizhu
%Y Rao, Gaoqi
%S Proceedings of the 20th Chinese National Conference on Computational Linguistics
%D 2021
%8 August
%I Chinese Information Processing Society of China
%C Huhhot, China
%G zho
%F li-etal-2021-ji
%X 在散文阅读理解的鉴赏类问题中,对拟人句赏析考查比较频繁。目前,已有的工作仅对拟人句中的本体要素进行识别并抽取,存在要素抽取不完整的问题,尤其是当句子中出现多个本体时,需要确定拟人词与各个本体的对应关系。为解决这些问题,本文提出了基于人物特征增强的拟人句要素抽取方法。该方法利用特定领域的特征,增强句子的向量表示,再利用条件随机场模型对拟人句中的本体和拟人词要素进行识别。在此基础上,利用自注意力机制对要素之间的关系进行检测,使用要素同步机制和关系同步机制进行信息交互,用于要素识别和关系检测的输入更新。在自建的拟人数据集上进行\ensuremath<本体,拟人词\ensuremath>抽取的比较实验,结果表明本文提出的模型性能优于其他比较模型。
%U https://aclanthology.org/2021.ccl-1.55/
%P 612-621
Markdown (Informal)
[基于人物特征增强的拟人句要素抽取方法研究(Research on Element Extraction of Personified Sentences Based on Enhanced Characters)](https://aclanthology.org/2021.ccl-1.55/) (Li et al., CCL 2021)
ACL