@inproceedings{kis-szabo-berend-2020-quasi,
title = "Quasi-Multitask Learning: an Efficient Surrogate for Obtaining Model Ensembles",
author = "Kis-Szab{\'o}, Norbert and
Berend, G{\'a}bor",
editor = "Moosavi, Nafise Sadat and
Fan, Angela and
Shwartz, Vered and
Glava{\v{s}}, Goran and
Joty, Shafiq and
Wang, Alex and
Wolf, Thomas",
booktitle = "Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sustainlp-1.13/",
doi = "10.18653/v1/2020.sustainlp-1.13",
pages = "97--106",
abstract = "We propose the technique of quasi-multitask learning (Q-MTL), a simple and easy to implement modification of standard multitask learning, in which the tasks to be modeled are identical. With this easy modification of a standard neural classifier we can get benefits similar to an ensemble of classifiers with a fraction of the resources required. We illustrate it through a series of sequence labeling experiments over a diverse set of languages, that applying Q-MTL consistently increases the generalization ability of the applied models. The proposed architecture can be regarded as a new regularization technique that encourages the model to develop an internal representation of the problem at hand which is beneficial to multiple output units of the classifier at the same time. Our experiments corroborate that by relying on the proposed algorithm, we can approximate the quality of an ensemble of classifiers at a fraction of computational resources required. Additionally, our results suggest that Q-MTL handles the presence of noisy training labels better than ensembles."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kis-szabo-berend-2020-quasi">
<titleInfo>
<title>Quasi-Multitask Learning: an Efficient Surrogate for Obtaining Model Ensembles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Norbert</namePart>
<namePart type="family">Kis-Szabó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gábor</namePart>
<namePart type="family">Berend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nafise</namePart>
<namePart type="given">Sadat</namePart>
<namePart type="family">Moosavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Wolf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose the technique of quasi-multitask learning (Q-MTL), a simple and easy to implement modification of standard multitask learning, in which the tasks to be modeled are identical. With this easy modification of a standard neural classifier we can get benefits similar to an ensemble of classifiers with a fraction of the resources required. We illustrate it through a series of sequence labeling experiments over a diverse set of languages, that applying Q-MTL consistently increases the generalization ability of the applied models. The proposed architecture can be regarded as a new regularization technique that encourages the model to develop an internal representation of the problem at hand which is beneficial to multiple output units of the classifier at the same time. Our experiments corroborate that by relying on the proposed algorithm, we can approximate the quality of an ensemble of classifiers at a fraction of computational resources required. Additionally, our results suggest that Q-MTL handles the presence of noisy training labels better than ensembles.</abstract>
<identifier type="citekey">kis-szabo-berend-2020-quasi</identifier>
<identifier type="doi">10.18653/v1/2020.sustainlp-1.13</identifier>
<location>
<url>https://aclanthology.org/2020.sustainlp-1.13/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>97</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quasi-Multitask Learning: an Efficient Surrogate for Obtaining Model Ensembles
%A Kis-Szabó, Norbert
%A Berend, Gábor
%Y Moosavi, Nafise Sadat
%Y Fan, Angela
%Y Shwartz, Vered
%Y Glavaš, Goran
%Y Joty, Shafiq
%Y Wang, Alex
%Y Wolf, Thomas
%S Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kis-szabo-berend-2020-quasi
%X We propose the technique of quasi-multitask learning (Q-MTL), a simple and easy to implement modification of standard multitask learning, in which the tasks to be modeled are identical. With this easy modification of a standard neural classifier we can get benefits similar to an ensemble of classifiers with a fraction of the resources required. We illustrate it through a series of sequence labeling experiments over a diverse set of languages, that applying Q-MTL consistently increases the generalization ability of the applied models. The proposed architecture can be regarded as a new regularization technique that encourages the model to develop an internal representation of the problem at hand which is beneficial to multiple output units of the classifier at the same time. Our experiments corroborate that by relying on the proposed algorithm, we can approximate the quality of an ensemble of classifiers at a fraction of computational resources required. Additionally, our results suggest that Q-MTL handles the presence of noisy training labels better than ensembles.
%R 10.18653/v1/2020.sustainlp-1.13
%U https://aclanthology.org/2020.sustainlp-1.13/
%U https://doi.org/10.18653/v1/2020.sustainlp-1.13
%P 97-106
Markdown (Informal)
[Quasi-Multitask Learning: an Efficient Surrogate for Obtaining Model Ensembles](https://aclanthology.org/2020.sustainlp-1.13/) (Kis-Szabó & Berend, sustainlp 2020)
ACL