@inproceedings{yang-etal-2020-improving,
title = "Improving Event Duration Prediction via Time-aware Pre-training",
author = "Yang, Zonglin and
Du, Xinya and
Rush, Alexander and
Cardie, Claire",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.302/",
doi = "10.18653/v1/2020.findings-emnlp.302",
pages = "3370--3378",
abstract = "End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training). Specifically, one model predicts the range/unit where the duration value falls in (R-PRED); and the other predicts the exact duration value (E-PRED). Our best model {--} E-PRED, substantially outperforms previous work, and captures duration information more accurately than R-PRED. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2020-improving">
<titleInfo>
<title>Improving Event Duration Prediction via Time-aware Pre-training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zonglin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinya</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Rush</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Cardie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training). Specifically, one model predicts the range/unit where the duration value falls in (R-PRED); and the other predicts the exact duration value (E-PRED). Our best model – E-PRED, substantially outperforms previous work, and captures duration information more accurately than R-PRED. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines.</abstract>
<identifier type="citekey">yang-etal-2020-improving</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.302</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.302/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3370</start>
<end>3378</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Event Duration Prediction via Time-aware Pre-training
%A Yang, Zonglin
%A Du, Xinya
%A Rush, Alexander
%A Cardie, Claire
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F yang-etal-2020-improving
%X End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training). Specifically, one model predicts the range/unit where the duration value falls in (R-PRED); and the other predicts the exact duration value (E-PRED). Our best model – E-PRED, substantially outperforms previous work, and captures duration information more accurately than R-PRED. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines.
%R 10.18653/v1/2020.findings-emnlp.302
%U https://aclanthology.org/2020.findings-emnlp.302/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.302
%P 3370-3378
Markdown (Informal)
[Improving Event Duration Prediction via Time-aware Pre-training](https://aclanthology.org/2020.findings-emnlp.302/) (Yang et al., Findings 2020)
ACL