@inproceedings{gupta-2020-finlp,
title = "{F}i{NLP} at {F}in{C}ausal 2020 Task 1: Mixture of {BERT}s for Causal Sentence Identification in Financial Texts",
author = "Gupta, Sarthak",
editor = "El-Haj, Dr Mahmoud and
Athanasakou, Dr Vasiliki and
Ferradans, Dr Sira and
Salzedo, Dr Catherine and
Elhag, Dr Ans and
Bouamor, Dr Houda and
Litvak, Dr Marina and
Rayson, Dr Paul and
Giannakopoulos, Dr George and
Pittaras, Nikiforos",
booktitle = "Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "COLING",
url = "https://aclanthology.org/2020.fnp-1.12/",
pages = "74--79",
abstract = "This paper describes our system developed for the sub-task 1 of the FinCausal shared task in the FNP-FNS workshop held in conjunction with COLING-2020. The system classifies whether a financial news text segment contains causality or not. To address this task, we fine-tune and ensemble the generic and domain-specific BERT language models pre-trained on financial text corpora. The task data is highly imbalanced with the majority non-causal class; therefore, we train the models using strategies such as under-sampling, cost-sensitive learning, and data augmentation. Our best system achieves a weighted F1-score of 96.98 securing 4th position on the evaluation leaderboard. The code is available at \url{https://github.com/sarthakTUM/fincausal}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-2020-finlp">
<titleInfo>
<title>FiNLP at FinCausal 2020 Task 1: Mixture of BERTs for Causal Sentence Identification in Financial Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarthak</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Vasiliki</namePart>
<namePart type="family">Athanasakou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Sira</namePart>
<namePart type="family">Ferradans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Catherine</namePart>
<namePart type="family">Salzedo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Ans</namePart>
<namePart type="family">Elhag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Marina</namePart>
<namePart type="family">Litvak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dr</namePart>
<namePart type="given">George</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikiforos</namePart>
<namePart type="family">Pittaras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>COLING</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system developed for the sub-task 1 of the FinCausal shared task in the FNP-FNS workshop held in conjunction with COLING-2020. The system classifies whether a financial news text segment contains causality or not. To address this task, we fine-tune and ensemble the generic and domain-specific BERT language models pre-trained on financial text corpora. The task data is highly imbalanced with the majority non-causal class; therefore, we train the models using strategies such as under-sampling, cost-sensitive learning, and data augmentation. Our best system achieves a weighted F1-score of 96.98 securing 4th position on the evaluation leaderboard. The code is available at https://github.com/sarthakTUM/fincausal</abstract>
<identifier type="citekey">gupta-2020-finlp</identifier>
<location>
<url>https://aclanthology.org/2020.fnp-1.12/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>74</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FiNLP at FinCausal 2020 Task 1: Mixture of BERTs for Causal Sentence Identification in Financial Texts
%A Gupta, Sarthak
%Y El-Haj, Dr Mahmoud
%Y Athanasakou, Dr Vasiliki
%Y Ferradans, Dr Sira
%Y Salzedo, Dr Catherine
%Y Elhag, Dr Ans
%Y Bouamor, Dr Houda
%Y Litvak, Dr Marina
%Y Rayson, Dr Paul
%Y Giannakopoulos, Dr George
%Y Pittaras, Nikiforos
%S Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation
%D 2020
%8 December
%I COLING
%C Barcelona, Spain (Online)
%F gupta-2020-finlp
%X This paper describes our system developed for the sub-task 1 of the FinCausal shared task in the FNP-FNS workshop held in conjunction with COLING-2020. The system classifies whether a financial news text segment contains causality or not. To address this task, we fine-tune and ensemble the generic and domain-specific BERT language models pre-trained on financial text corpora. The task data is highly imbalanced with the majority non-causal class; therefore, we train the models using strategies such as under-sampling, cost-sensitive learning, and data augmentation. Our best system achieves a weighted F1-score of 96.98 securing 4th position on the evaluation leaderboard. The code is available at https://github.com/sarthakTUM/fincausal
%U https://aclanthology.org/2020.fnp-1.12/
%P 74-79
Markdown (Informal)
[FiNLP at FinCausal 2020 Task 1: Mixture of BERTs for Causal Sentence Identification in Financial Texts](https://aclanthology.org/2020.fnp-1.12/) (Gupta, FNP 2020)
ACL