@inproceedings{zhong-etal-2020-nlp,
title = "How Does {NLP} Benefit Legal System: A Summary of Legal Artificial Intelligence",
author = "Zhong, Haoxi and
Xiao, Chaojun and
Tu, Cunchao and
Zhang, Tianyang and
Liu, Zhiyuan and
Sun, Maosong",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.466/",
doi = "10.18653/v1/2020.acl-main.466",
pages = "5218--5230",
abstract = "Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain. In recent years, LegalAI has drawn increasing attention rapidly from both AI researchers and legal professionals, as LegalAI is beneficial to the legal system for liberating legal professionals from a maze of paperwork. Legal professionals often think about how to solve tasks from rule-based and symbol-based methods, while NLP researchers concentrate more on data-driven and embedding methods. In this paper, we introduce the history, the current state, and the future directions of research in LegalAI. We illustrate the tasks from the perspectives of legal professionals and NLP researchers and show several representative applications in LegalAI. We conduct experiments and provide an in-depth analysis of the advantages and disadvantages of existing works to explore possible future directions. You can find the implementation of our work from \url{https://github.com/thunlp/CLAIM}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhong-etal-2020-nlp">
<titleInfo>
<title>How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haoxi</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaojun</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cunchao</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain. In recent years, LegalAI has drawn increasing attention rapidly from both AI researchers and legal professionals, as LegalAI is beneficial to the legal system for liberating legal professionals from a maze of paperwork. Legal professionals often think about how to solve tasks from rule-based and symbol-based methods, while NLP researchers concentrate more on data-driven and embedding methods. In this paper, we introduce the history, the current state, and the future directions of research in LegalAI. We illustrate the tasks from the perspectives of legal professionals and NLP researchers and show several representative applications in LegalAI. We conduct experiments and provide an in-depth analysis of the advantages and disadvantages of existing works to explore possible future directions. You can find the implementation of our work from https://github.com/thunlp/CLAIM.</abstract>
<identifier type="citekey">zhong-etal-2020-nlp</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.466</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.466/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>5218</start>
<end>5230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence
%A Zhong, Haoxi
%A Xiao, Chaojun
%A Tu, Cunchao
%A Zhang, Tianyang
%A Liu, Zhiyuan
%A Sun, Maosong
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhong-etal-2020-nlp
%X Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain. In recent years, LegalAI has drawn increasing attention rapidly from both AI researchers and legal professionals, as LegalAI is beneficial to the legal system for liberating legal professionals from a maze of paperwork. Legal professionals often think about how to solve tasks from rule-based and symbol-based methods, while NLP researchers concentrate more on data-driven and embedding methods. In this paper, we introduce the history, the current state, and the future directions of research in LegalAI. We illustrate the tasks from the perspectives of legal professionals and NLP researchers and show several representative applications in LegalAI. We conduct experiments and provide an in-depth analysis of the advantages and disadvantages of existing works to explore possible future directions. You can find the implementation of our work from https://github.com/thunlp/CLAIM.
%R 10.18653/v1/2020.acl-main.466
%U https://aclanthology.org/2020.acl-main.466/
%U https://doi.org/10.18653/v1/2020.acl-main.466
%P 5218-5230
Markdown (Informal)
[How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence](https://aclanthology.org/2020.acl-main.466/) (Zhong et al., ACL 2020)
ACL